Amorphous ferromagnetism

(a progress report in understanding & experiments)

Chris 7/12/05

Outline

- Introduce amorphous materials¹
- How magnetism might change new types of magnetism
- One and two sub-networks
- Domains and anisotropy
- · Gd-Transition metal literature
- Our Gd-Ni
- Outlook
- 1. Mostly taken from: J. M. D. Coey, J. Appl. Phys. 49, 1646 (1978) and/or R. C. O'Handley, *Modern Magnetic Materials* (Wiley, 2000).

Key features of amorphousness

- No long range order
- Short range order -> NOT random!
- Bond lengths change (generally increase
 - looser packing)
- · Concentrate on metallic bonding
- · Very small 'grains' ~ a few nm

How do you make amorphous materials?

- Splat cool
- Sputtering etc
- Add metalloid elements (Si, B, C or P)
- Bombard with high energy ions (e.g. FIB)

Different types of magnetism

- Ferromagnet
- Antiferromagnet
- · Paramagnet
- · Diamagnet
- Speromagnet
- Asperomagnet
- Sperimagnet

- · Hellmagnet
- · Micterragnet
- · Superparamagnet
- Ferrimagnet
- · Metamagnet
- · Parasitie ferromagnet
- · Spinglass

Want to get to a concentrated system of GdNi eventually - ignore stuff like RKKY oscillatory exchange through a non-magnetic spacer in a dilute system.

How might magnetism change?

(passing note: For BCS superconductors: atoms random: trouble for phonons = big changes in T_c But nothing really new)

Not such a obvious link for magnetism to atomic positions:

$$\mathscr{H} = -\sum \mathbf{J}(r_{ij}) \mathbf{S}_i \cdot \mathbf{S}_j$$

Weird things can happen: e.g. the sign of $\mathbf{J}(r_{ij})$ for Fe changes for $\mathbf{r} \sim 3 \text{\AA}$ (Clearly with RKKY oscillation too things can get even more complicated: don't go there today)

One sub-network

(same or similar atoms)

- (a) Ferromagnet
- (b) Antiferromagnet (hard to get - frustration: many AFs become FM in Amorphous state)

- (c) Asperomagnet (net M)
- (d) Speromagnet (no net M)

Two sub-networks

- (a) Ferromagnetism
- (b) Ferrimagnetism

ALL DEPENDS ON DETAILS OF THE INTER AND INTRA-NETWORK COUPLING

- (a) Speromagnetism
- (b) Sperimagnetism

Local 'random' anisotropy

For 3d systems is turns out L $\sim 20 \mu m$ For 4f (non-5-state) L $\sim 20 nm$

But this is what Gd is!

Non-trivial, but remember by comparing localisation 4f shell diameter ~0.3Å

If local anisotropy is weak:

Only shape and stress etc control 'domain's' direction not rectilinear

For very strong local anisotropy, the 'domain' is a few hundred atoms.

For the speromagnet, the word domain is not really sensible at all.

Domains

A. Gavrin and J. Unguris, J. Magn. Magn. Mater. 213, 95 (2000).

- Distinction between domains and domain walls becomes blurred....
- •Similarly since there can be only very weak anistropy domain walls can be very wide

Domains 2

- Also given no grain boundaries: no domain wall pinning: domain motion and therefore $H_{\mathcal{C}}$ can be very small
- However if you have some local anistropy,
 e.g. asperomagnet, the first half is easy
 (wall motion), then you have to close the
 'umbrella' of spins can be very hard!

Literature of Gd with transition metals (TM)

 Compensation of antiferromagnetically coupled Gd-Co: ferrimagnet.

P. Chaudhari, J. J. Cuomo, and R. J. Gambino, Appl. Phys. Lett. 22, 337 (1972).

300

T °K

350

400

100

150

Same thing in Gd-Fe: Orehotsky and Schröder, J. Appl. Phys. 43, 2413 (1972).

Both are co-linear ferrimagnets

Weaker moment in Ni, and I've never seen a compensation plot either... (c.f. PdNi vs PdFe??)

GdNi not the same as other Ni-Rare earths [1,2]

Other rare earths such as Ni_{3.4}Ho, Ni_{3.2}Dy, Ni_{3.0}Er

Show speromagnetic order of the RE with antiparallel weak Ni moment: hard to saturate!

Ni₃Y is non-magnetic! (more Ni will eventually work)

NiGd: Negative and positive MR seen - difference between near to T_{Curie} and well below... discuss another time

^[2] S. von Molnar *et al* J. Appl. Phys. **52**, 2193 (1981).

^[1] Asomoza *et al* J. Phys. F: Metal Phys. **9**, 349 (1979)

Also have antiparallel weak Ni moment, but Gd not speromagnetic

Our Gd_20Ni_80: M(H)

Our GdNi: M(T)

· Do we see something 0.05 like compensation? -M(T) / M(4.2K) 0.02 0.8 0.01 M(T)/M(4.2K) 0.00 0.6 30 20 40 50 T(K) T_{Curie} suppressed for thin films, not 0.2 so surprising 0.0 10 20 30 40 50 T(K)

Outlook in literature

Amorphous magnets have been around for a while, but new interest appearing in research:

- Exploit compensation (ferrimagnetism): Gd-Co: measure domain wall magnetoresistance: Prieto et PRB 71, 214428 (2005).
- Amorphous FM in spin valves: Wu et al, APL 72, 2176 (1998), Djayaprawira et al, APL 86, 092502 (2005).
- Amorphous (non-magnetic) spacers in spin valves: Jun et al JMMM 286, 158 (2005)
- Spin torque with amorphous magnets: Tulapurkar et al, Nature 438, 339 (2005)

Outlook for us

- Understand what's happening with the M(T) curves (esp. for thinnest films localisation?): tomorrow in the SQUID!
- Make & measure FSF spin valves (one is ready)
- Maybe all amorphous CIP and/or CPP FNF structures are also interesting as localisation sets in in the MoGe.

$$(FSF \longrightarrow FNF \longrightarrow FIF)$$