Transport and dynamical properties of permalloy domain walls
from first-principles
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Motivation: Current-induced domain wall motion P ‘\L) )
The magnetization dynamics of a domain wall (DW) in the presence of a spin-polarized ) Yoy 4 J J J Nl
electr:;;urrent] is described b);;:e generalized Landau-Lifshitz-Gilbert equajtlon: |ﬂ ' t ‘ \ . i » |
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= g and B determine the magnetization dynamics of DWs: P current. polarlzatloh . —
the current-induced DW velocity is ~ B/a M saturation magnetization @ \\
= The physical origin and numerical value of 8 are still under debate: Sy B
for Nig,Fe,, DWs, measured values of 8 range between 0.01 and 0.13.

Methods: First-principles spin transport | ff—
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a and B are evaluated using a scattering matrix S(r,) [1] calculated from first-principles [2] ‘
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» Landauer-Biittiker scattering formalism implemented with TB-LMTO

= “Wave function matching” scheme to calculate scattering matrix
= Self-consistent ASA potentials based on LSDA of density-functional theory and CPA

= Spin-orbit coupling, non-collinearity and disorder on an equal footing nf T
= 8300 atoms in scattering region, 96x96 k-points for a 5x5 lateral supercell O
f==}
Modeling: 3 types of DWs 0 R Jo
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< oo disorder scattering is strong;
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%’j = In the adiabatic limit, DW scattering has little effect
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ok = Rapidly-varying magnetization dominates the 008 Bl
non-adiabatic behaviour of a and 8 in narrow DWs;

Ay, (M) = In the adiabatic limit, 8 is NOT a constant, but a 2%
Ryw = Rya + B+ Ry function of DW width and type. It is determined by the 000 g
R, : intrinsic DW resistance spin density accumulation in the DW due to spin-orbit
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Conclusion: we report the results of first-principles calculations of the resistance, the effective Gilbert damping and the out-of-plane spin torque
of NigyFe,qo DWs. The rapid variation of magnetization in narrow DWs yields non-adiabatic contributions to Ry, @ and @ that decrease with the DW
width. In the adiabatic limit, the spin-orbit coupling mediated reflection of incident electrons at the DW determines RDW and . Surprisingly, the

adiabatic 8 varies with the DW width and type. Our results should provide valuable guidance for further experimental investigations.
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