Development of CPP devices: tunnel structures

(from February -> now)

chris et al

Motivation

CPP junctions:

Josephson junctions with F barriers: π -junctions

Crossover from $0-\pi$ state as a function of T

Ryazanov et al : S/F/S: Nb/CuNi/Nb, 50 X 50 μ m² junctions $R_N \sim 10^{-5}~\Omega$ giving $I_c R_N \sim 1~nV$ for sensible critical currents Not easy to measure! (need SQUID picovoltmeter)

Motivation

Either: make the devices smaller to raise R_N , (and use thinner

barriers to keep I_c high)

Or: add an I layer

Nb/PdNi/AlO $_{\times}$ /Nb junctions $0-\pi$ crossover vs F thickness

ALSO: S/F/I/N

Now you measure the (inversion) of the density of states

Kontos et al

Mesa structure

Charging means that the lift-off of the SiO layer was not done properly: PMMA Remains above the mesa which means you can't make a good contact

First tests: S/I/S

S/I/N

S/F/I/N

Signals very small, so need a lockin amplifier to measure diff. resistance directly (top)

Same chip – big difference in size of conductance change. Is the inverted DoS real??

Future: experiments

- Get better processing!!
- For thickness with N(0) ~ 0 see if we can see $0-\pi$ crossover with T
- Try same things with Py instead of PdNi (show that strong F can make π junctions, and see what happens with domains: field tune a crossover??) & Josephson junctions
- Replace everything by amorphous things:
 MoGe / GdNi
- · Follow up with STM if possible