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Dependence of the vortex configuration on the geometry of mesoscopic flat samples
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The influence of the geometry of a thin superconducting sample on the penetration of the magnetic field lines
and the arrangement of vortices are investigated theoretically. We compare the vortex state of superconducting
disks, squares, and triangles with the same surface area having nonzero thickness. The coupled nonlinear
Ginzburg-Landau equations are solved self-consistently and the important demagnetization effects are taken
into account. We calculate and compare quantities such as the free energy, the magnetization, the Cooper-pair
density, the magnetic field distribution, and the superconducting current density for the three geometries. For
given vorticity the vortex lattice is different for the three geometries, i.e., it tries to adapt to the geometry of the
sample. This also influences the stability range of the different vortex states. For certain magnetic field ranges
we found a coexistence of a giant vortex placed in the center and single vortices towards the corners of the
sample. TheH-T phase diagram is obtained for the three investigated geometries and we found that the critical
magnetic field is substantially enhanced for the triangle geometry.
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I. INTRODUCTION

In mesoscopic samples there is competition betwee
triangle configuration of the vortex lattice, being the lowe
energy configuration in bulk material~and films!, and the
boundary, which tries to impose its geometry on the vor
lattice. For example, a circular geometry will favor vortic
situated on a ring near the boundary, and only far away fr
the boundary its influence diminishes and the triangular
tice may reappear. Therefore, it is expected that differ
geometries will favor different arrangements of vortices a
will make certain vortex configurations more stable than o
ers. In small systems vortices may overlap so strongly th
is more favorable to form one big giant vortex. The lat
will preferably have a circular geometry. As a consequenc
is expected that the giant to multivortex transition will b
strongly influenced by the geometry of the boundary as w
also be the stability of the giant vortex configuration.

These issues and the dependence of the stability of
giant vortex configuration and of the different multivorte
configurations on the geometry of the sample will be inv
tigated in the present paper. As an example, we will comp
the most important geometries: the circular disk, the squ
and the triangle.

Mesoscopic~circular! disks and rings have been the mo
popular in this respect. Experimentally, the magnetization
superconducting disks and rings has been measured
function of the externally applied magnetic field.1–3 Several
transitions between different superconducting states w
found, and the magnetization depends sensitively on size
temperature. The main part of the theoretical studies cove
disks4–8 and rings9–11 of zero thickness. In this case one c
neglect the magnetic field induced by the supercurrents
one assumes that the total magnetic field equals the e
nally applied magnetic field, which is uniform. A limite
number of studies considered disks12–15 and rings16 with fi-
nite thickness. Then, the finite thickness of the disks infl
ences the magnetic field profile and it is necessary to t
into account the demagnetization effects. Often only the~cir-
0163-1829/2002/65~10!/104515~12!/$20.00 65 1045
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cular symmetric! giant vortex states or the superconductin
normal transition were investigated. Even in type-I superc
ductors multivortex states in disks5–7,14 and rings16,11 were
predicted. It was found that if the disk or the ring is larg
enough, the giant vortex nucleates into a multivortex state
which the vortices are situated on a ring. In a ring geome
we found that breaking the circular symmetry through a n
central location of the hole favors the multivortex state16

This means that by changing the geometry, the giant vo
state transits into a multivortex state.

Mesoscopic superconductors with noncircular geomet
have attracted less attention. Moshchalkovet al.17 measured
the superconducting/normal transition in superconduct
lines, squares, and square rings using resistance mea
ments. Bruyndoncxet al.18 calculated theH-T phase dia-
gram for a square with zero thickness in the framework
the linearized Ginzburg-Landau theory, which is only va
near the superconducting/normal boundary. They compa
their results with theH-T phase boundary obtained from
resistance measurements. Fominet al.19 studied square loops
with leads attached to it and found inhomogeneous Coo
pair distributions in the loop with enhancements near
corners of the square loop. Schweigert and Peeters,13,15 cal-
culated the nucleation field as a function of the sample a
for disks, squares, and triangles with zero thickness. Jada
et al.20 computed the superconducting/normal transition
mesoscopic disks and squares of zero thickness. For ma
scopic squares, the magnetic field distribution and the fl
penetration are investigated in detail by experimental ob
vations using the magneto-optical Faraday effect and
first-principles calculations that describe the supercondu
as a nonlinear anisotropic conductor.21 In the latter case the
penetration of the magnetic field occurs continuously.
macroscopic samples the penetration of individual fluxoid
not so important in the theoretical description of the ma
netic response of the superconductor, but it turns out to
essential in our mesoscopic samples. Recently, Aftalion
Du22 studied cylindrical square-shaped superconduc
within the Ginzburg-Landau theory.
©2002 The American Physical Society15-1
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B. J. BAELUS AND F. M. PEETERS PHYSICAL REVIEW B65 104515
Chibotaru et al. investigated the vortex entry and th
nucleation of antivortices in infinitely thin superconductin
squares23 and triangles24 using the linearized Ginzburg
Landau theory. Within this linear theory they studied t
superconducting/normal transition and they found near
transition the nucleation of multivortices, antivortices, a
combination of these two instead of the expected surf
superconductivity. They found that those antivortices app
in order for the vortex state to preserve the symmetry
the sample boundary. They also calculated theH-T phase
diagram for the square and the triangle. Recently, Boˇa
and Kabanov25 studied thek→` limit and extended those
results for thin superconducting squares, focusing the n
linear Ginzburg-Landau theory. Within this nonlinear theo
they showed that the vortex/antivortex configurati
becomes rapidly unstable when moving away from
superconducting/normal transition.

In the present paper we consider superconductors of fi
thickness and study the vortex configurations deep inside
superconducting state, i.e., far from the superconduct
normal boundary, for arbitrary value ofk. Our main focus
will be on the influence of the geometry of the superco
ductor on the vortex configuration and its stability. Our th
oretical analysis is based on a full self-consistent numer
solution of the coupled nonlinear Ginzburg-Landau~GL!
equations for arbitrary value ofk. No a priori shape or ar-
rangement of the vortex configuration is assumed. The m
netic field profile near and in the superconductor is obtai
self-consistently, and therefore the full demagnetization
fect is included in our approach.

The paper is organized as follows: In Sec. II we descr
the theoretical formalism. Our results are presented in S
III. We calculate and compare the free energy and the m
netization for disks, squares, and triangles with the same
face area. Next, we make a distinction between multivor
states and giant vortex states and we investigate the influ
of the sample geometry on the vortex lattice. We also ca
late the magnetic field range over which the vortex sta
with vorticity L are stable in disks, squares, and triangl
The magnetic field distribution and the current density
studied and theH-T phase diagram is obtained. Finally, w
summarize our results in Sec. IV.

II. THEORETICAL FORMALISM

In the present paper, we consider thin superconduc
samples having the same volume but with different geom
which are immersed in an insulating medium in the prese
of a perpendicular uniform magnetic fieldH0. To solve this
problem we follow the numerical approach of Schweig
and co-workers.14 As for thin disks (d!j,l) it is allowed to
average the GL equations over the disk thickness for sam
of arbitrary geometry. Using dimensionless variables and
London gauge divAW 50 for the vector potentialAW , we write
the system of GL equations in the following form:

~2 i¹W2D2AW !2C5C~12uCu2!, ~1a!
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2D3DAW 5
d

k2
d~z! jW2D , ~1b!

where

jW2D5
1

2i
~C* ¹W2DC2C¹W2DC* !2uCu2AW , ~1c!

is the density of superconducting current. The supercond
ing wave function satisfies the boundary conditions (2 i¹W2D

2AW )Cun50 normal to the sample surface andAW 5 1
2 H0reWf

far away from the superconductor. Here the distance is m
sured in units of the coherence lengthj, the vector potential
in c\/2ej, and the magnetic field inHc25c\/2ej2

5kA2Hc . The superconductor is placed in the (x,y) plane,
the external magnetic field is directed along thez axis, and
the indices 2D, 3D refer to two- and three-dimensional o
erators, respectively.

To solve the system of Eqs.~1a! and~1b!, we generalized
the approach of Ref. 14 for circular disks to superconduct
with an arbitrary flat geometry. We apply a finite-differen
representation for the order parameter and the vector po
tial on a uniform Cartesian space grid (x,y), with typically
1283128 grid points for the area of the superconductor, a
use the link variable approach26 and an iteration procedur
based on the Gauss-Seidel technique to findC. The vector
potential is obtained with the fast Fourier transform tec
nique where we setAW uxu5RS ,uyu5RS

5H0(x,2y)/2 at the
boundary of a box with a larger space grid of size typically
times the superconductor area.

For circular configurations such as disks the giant vor
state is characterized by the total angular momentumL
throughC5c(r)exp(iLf), wherer andf are the cylindri-
cal coordinates.L is the winding number and gives the vo
ticity of the system. Due to the nonlinearity of the GL equ
tions an arbitrary superconducting state is generally
mixture of different angular harmonicsL even in axially
symmetric systems. Nevertheless, we can introduce an
log to the total angular momentumL, which is still a good
quantum number and which is in fact nothing else then
number of vortices in the system.

For nonaxially symmetric systems there exist no axia
symmetric giant vortex states, and hence the supercond
ing state is always a mixture of different angular harmoni
The vorticity L of a particular superconducting sample c
be calculated by considering the phasew of the order param-
eter along a closed loop near the boundary of the sam
where the total phase difference is alwaysDw5L32p. In
nonaxially symmetric systems three possible vortex sta
exist: ~i! a multivortex state that contains separate vortic
~ii ! a superconducting state that contains one giant vorte
the center, and~iii ! a state that is a mixture of both: a gia
vortex in the center surrounded by single vortices. The gi
vortex is not necessarily circular symmetric as in the case
a circular disk, but it may be deformed due to the spec
shape of the sample boundary.

To find the different vortex configurations, which includ
the metastable states, we search for the steady-state solu
5-2
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FIG. 1. The free energy and the magnetization as a function of the applied magnetic field for the disk, the square, and the tria
the same surface areaS5p16j2 and thicknessd50.1j for k50.28.~a,c,e! The free energy of the giant vortex state~solid curves! and the
multivortex states~dashed curves! and the multivortex to giant vortex transition fields~open circles!. ~b,d,f! The magnetization of theL states
~solid curves! and the ground state~thick solid curve!.
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of Eqs. ~1a! and ~1b! starting from different randomly gen
erated initial conditions. Then we increase/decrease slo
the magnetic field and recalculate each time the exact vo
structure. We do this for each vortex configuration in a m
netic field range where the number of vortices stays
same. By comparing the dimensionless Gibbs free ener
of the different vortex configurations,

F5V21E
V
@2~AW 2AW 0!• jW2D2uCu4#drW, ~2!

where integration is performed over the sample volumeV,
andAW 0 is the vector potential of the uniform magnetic fiel
we find the ground state, the metastable states, and the
netic field range over which the different states are sta
The dimensionless magnetization, which is a direct meas
of the expelled magnetic field from the sample, is defined

M5
^H&2H0

4p
, ~3!

whereH0 is the applied magnetic field.^H& is the magnetic
field averaged over the sample andHW 5rotAW .

The temperature is indirectly included inj, l, Hc2,
whose temperature dependence is given by

j~T!5
j~0!

Au12T/Tc0u
, ~4a!
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Au12T/Tc0u
, ~4b!

Hc2~T!5Hc2~0!U12
T

Tc0
U, ~4c!

whereTc0 is the critical temperature at zero magnetic fie
We will only explicitly insert temperature if we consider th
H-T phase diagrams, while the other calculations are fo
certain fixed temperature. Notice further that the Ginzbu
Landau parameterk5l/j is independent of the temperatur

III. RESULTS

As a typical example, we consider superconducting dis
squares, and triangles with the same surface areaS5p16j2,
the same finite thicknessd50.1j and the same Ginzburg
Landau parameterk50.28, which is typical for Al.2 Thus the
superconducting disk has a radiusR54.0j, the square has a
width W57.090j, and the triangle has a widthW
510.774j.

A. Free energy and magnetization

In the first step, we will compare the free energy and
magnetization for the three geometries. In Figs. 1~a! and 1~b!
the free energy and the magnetization are shown for the
as a function of the applied magnetic field, in Figs. 1~c! and
1~d! for the square and in Figs. 1~e! and 1~f! for the triangle.
5-3
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B. J. BAELUS AND F. M. PEETERS PHYSICAL REVIEW B65 104515
In Figs. 1~a!,1~c!, and 1~e! the free energy of the differen
giant vortex states is given by solid curves and the free
ergy of the multivortex states by dashed curves. The o
circles indicate the transition from multivortex state to gia
vortex state at the transition fieldsHMG . This transition is of
second order.14 Figures 1~b!, 1~d!, and 1~f! show the magne-
tization of the differentL states with thin curves and th
ground state is indicated by the thick curve. There exist v
tex states with vorticity up toL511 for the disk and the
square and up to 13 for the triangle. The superconduc
state is destroyed atHc3 /Hc2'1.95 for the disk, at
Hc3 /Hc2'2.0 for the square, andHc3 /Hc2'2.5 for the tri-
angle. Thus for samples with sharp corners
superconducting/normal transition moves to higher field~for
fixed surface area!.15 Multivortex states can nucleate in th
disk for vorticity L52, 3, 4, and 5 and in the square and t
triangle forL52, 3, 4, 5, and 6. Moreover, for the disk, wit
increasing field, the multivortex state always transits to
giant vortex state for fixedL, while for the square and th
triangle someL states are multivortex states over the who
magnetic field range. For the triangle this is the case for
states with vorticityL53, 4, 5, and 6, and for the square f
the states withL54 and 5. This indicates that breaking th
axial symmetry favors the multivortex state over the gia
vortex state. In some magnetic field regions, the vortex st
exhibit a paramagnetic response, i.e.,2M,0. This occurs in
the disk for metastable states withL51, 4 –8 and in the
square for metastable states withL51, 4, and 5. For the
triangle 2M is always positive, i.e., only diamagnetic b
havior is observed.

In order to stress the difference between macroscopic
our mesoscopic superconductors we show in Fig. 2~a! the
magnetic fluxfL→L11 passing through the superconduct
at the thermodynamic transition fieldHL→L11 as a function
of the vorticityL for the three geometries. We scaled this fl
by (L11)f0, which is the expected flux when no bounda
effects are important. The result for the disk is given
circles, for the square by squares and for the triangle
triangles. In the figure we use open symbols for transitio
between two giant vortex states, filled symbols for transitio
between a multivortex and a giant vortex state, and cros
symbols for transitions between two multivortex states. T
symbol for the largestL corresponds to the superconductin
normal transition. For the disk we findL→L11 transitions
between a giant vortex and a multivortex state forL51 and
2, while the other transitions occur between two giant vor
states. For the square we find transitions between a multi
tex state and a giant vortex state forL52, 3, and 6 and
between two multivortex states forL54 and 5. For the tri-
angle, transitions between a giant and a multivortex s
occur forL51, 2, and 6 and between two multivortex stat
for L52, 3, and 4. Notice further that forL.6, the value of
fL→L11 /(L11)f0 becomes almost independent ofL for
the three geometries:fL→L11 /(L11)f0'1.3 for the disk
and the square andfL→L11 /(L11)f0'1.4 for the triangle.
The magnetic fluxfL→L11 passing through the superco
ductor at the thermodynamic transition fieldHL→L11 can be
fitted by the following formula:
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with a53.108 37,b50.617 92, andc50.598 25 for the disk
@solid curve in Fig. 2~a!#, a53.197 69,b50.609 62, andc
50.583 96 for the square~dashed curve!, anda53.586 14,
b50.661 14, andc50.6031 for the triangle~dotted curve!.

Another important quantity is the amount of flux increa
needed to increase the vorticity of the ground state fromL to
L11, which is plotted in Fig. 2~b! for the disk~solid curves,
open circles!, the square~dashed curve, open squares!, and
the triangle~dotted curve, open triangles!. For 3,L,11,
this value is almost independent ofL and of the geometry
and equalsDf/f0.1.1, i.e., it is approximately equal to
but still different from, the flux quantumf0. Notice that
Df/f0.1 for anyL, which is a consequence of the dema
netization effects.

B. Multivortex states

To distinguish whether the superconducting state is a m
tivortex state or a giant vortex state and to determine
multivortex to giant vortex state transition field, we consi
ered the Cooper-pair densityuCucenter

2 in the center of the
superconductor.14 We can be sure that the superconducti
state is a multivortex state ifuCucenter

2 Þ0 for L.1. The rea-

FIG. 2. ~a! The flux fL→L11 corresponding to the thermody
namic transition fieldHL→L11 as a function of the vorticityL for
the disk~circles!, for the square~squares!, and for the triangle~tri-
angles!. The curves are the fitted results.~b! The flux Df corre-
sponding to the magnetic field range needed to increase the vor
of the ground state fromL to L11 as a function of the vorticityL
for the disk~solid curves, open circles!, the square~dashed curve,
open squares!, and the triangle~dotted curve, open triangles!.
5-4
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son is that giant vortices are always in the center of
superconductor, and henceuCucenter

2 50. Figure 3 shows the
Cooper-pair density in the center of the square as a func
of the applied magnetic field. The Cooper-pair dens
uCucenter

2 is finite for H0 /Hc2,HGM /Hc2'0.5825 and
0.7825 for L52 and 3, respectively, anduCucenter

2 50 for
H0 /Hc2.HGM /Hc2. For L54 the Cooper-pair density in
the center differs from zero over the whole magnetic fi
region where theL54 state is stable. On the other han
uCucenter

2 50 does not guarantee that the superconduc
state is a giant vortex state. For example, the multivor
state in a square forL55 shows four vortices away from th
center situated on the diagonals and one vortex in the ce
and henceuCucenter

2 50. Therefore, we studied the Coope
pair density distribution in detail. If two vortices are ve
close to each other, then the Cooper-pair density on the
between these two vortices will become very low too, wh
means that the separation between two vortices become
visible in the contour plots. Therefore we have to defi
another criterion to determine the multivortex to giant vort
transition. If the maximum between two minima in th
Cooper-pair density~i.e., the vortices! is lower than 0.5% of
the maximum Cooper-pair densityuCumax

2 in the sample, then
we will say that the vortices form a giant vortex state inste
of a multivortex state. With this criterion we find that for th
square geometry theL55 state is always a multivortex sta
and theL56 state is a multivortex state forH0 /Hc2,1.37
and a giant vortex state forH0 /Hc2.1.37.

How do the multivortex states look like? Figures 4~a!–
4~c! show the Cooper-pair density for a multivortex sta
with L52, 3, and 4 atH0 /Hc250.42, 0.67, and 0.745, re
spectively. High Cooper-pair density is given by dark regio
and low Cooper-pair density by light regions. ForL52 the
vortices are along the diagonal, forL53 the vortices are on
a triangle, and forL54 they are on a square. ForL54 only
the multivortex state is found, which is favored over t
giant vortex state. The reason is that the square vortex la
easily fits in the sample. Figures 4~d! and 4~e! show the

FIG. 3. The Cooper-pair density in the center of the square
function of the applied magnetic field for the states with vortic
L52, 3, and 4.
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phase of the order parameter for the multivortex states w
L55 at H0 /Hc250.82 and withL56 at H0 /Hc251.32.
Phases near zero are given by light regions and phases
2p by dark regions. By going around the superconductor,
phase clearly changes 532p in Fig. 4~d! and 632p in Fig.
4~e!. For L55 there are four vortices on a square and
fifth vortex is in the center. The latter has clearly a vortic
of 1. For L56 there are also four vortices on a square a
the other vortices are in the center forming one giant vor
with a vorticity of 2. Thus in this case we have the rema
able coexistence of a giant vortex in the center with a v
ticity of 2 and four clearly separated vortices around it. F
this case the multivortex to giant vortex transition field
defined as the field where separate vortices appear with
creasing field. This means that in Fig. 1 some states are
dicated as multivortex, even though there exists a~giant!
vortex in the center with vorticityL.1. Thus we consider a
state no longer a giant vortex state when the fluxes of
vortex are not confined in a single connected region. No
also that not only the configuration of the multivortices tri

a

FIG. 4. ~a–c! The Cooper-pair density for a multivortex state
a square withL52, 3, and 4 atH0 /Hc250.42, 0.67, and 0.745
respectively. High Cooper-pair density is given by dark regions, l
Cooper-pair density by light regions.~d,e! The phase of the orde
parameter for the multivortex states withL55 at H0 /Hc250.82
and with L56 at H0 /Hc251.32. Phases near zero are given
light regions and phases near 2p by dark regions.
5-5



gi

at
s
ly
ig
e

-
de
ra
o.
s
s
ct
2
lc
te

f
x

ld

ow
ld
re
rd

ity
te
e
re
th
n

t

it

r-

b

In

tri-
at

f
ted
the
opy
For

he
n-
on

we

by

and
of

ase

he

tes
for

r
rs

per-
me
.
r-

x
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to have the same geometry as the sample, but also the
vortex geometry depends on the sample geometry.

We found that for this size of the square sample, the st
with L.6 are always in the giant vortex state. With increa
ing L this giant vortex grows and superconductivity on
occurs in the corners of the square. This is illustrated in F
5~a! and 5~b!, which shows the Cooper-pair density for th
L511 state atH0 /Hc2'1.9 and 1.95. It is obvious that fur
ther increasing the field pushes the superconducting con
sate more to the corners. At the superconducting/normal t
sition field H0 /Hc2'2.0 the corners become normal to
Only extremely close to the superconductor/normal tran
tion the order parameter exhibits additional separate zero
the central part of the sample that correspond to the predi
vortex/antivortex configurations. We refer to Refs. 23 and
for a detailed study of these states. But note that our ca
lation also provides the amplitude of the order parame
which turns out to be very small (uCu,1023) in the central
area of the sample. As a consequence, additional zeros o
order parameter in this central region will lead to an e
tremely small variation of the Cooper-pair density (uCu2

,1026). The corresponding variation in the magnetic fie
will also be extremely small (DH/H0,1025) and probably
impossible to detect experimentally.

Figure 6 shows the positions of the vortices for theL
53 state in a square at applied magnetic fieldsH0 /Hc2
50.545, 0.62, 0.695, and 0.77. The latter field is just bel
the multivortex to giant vortex state transition fie
HGM /Hc2'0.7825. The solid lines indicate the squa
boundaries. With increasing field the vortices move towa
the center of the square and atHGM /Hc2'0.7825 they com-
bine in the center and form one giant vortex with vortic
L53. In the multivortex state, one vortex is always situa
on the diagonal of the square, regardless of the magn
field. The other two vortices are located such that the th
vortices form a equilateral triangle that is centered in
center of the square. Since the vortices move to the ce
with increasing field, the widthW of the triangular vortex
lattice decreases, i.e.,W53.27, 2.89, 2.32, and 1.61 a
H0 /Hc250.545, 0.62, 0.695, and 0.77, respectively.

For the triangle geometry multivortex states nucleate w
vorticity L52, 3, 4, 5, and 6@see Figs. 1~e! and 1~f!#. Fig-
ures 7~a!–7~c! show the Cooper-pair density for a multivo
tex state withL52, 3, and 4 atH0 /Hc250.495, 0.82, and
0.745, respectively. High Cooper-pair density is given

FIG. 5. The Cooper-pair density for theL511 state in a square
at H0 /Hc2'1.9 ~a! and 1.95~b!.
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dark regions and low Cooper-pair density by light regions.
the multivortex state with vorticityL52 the vortices are
situated along one of the perpendicular bisectors of the
angle. In theL53 state the vortices are on a triangle th
easily fits in the sample, while theL54 state consists o
three vortices on a triangle and the fourth vortex is situa
in the center. Instead of the square configuration as in
case of the square geometry, the vortex lattice tries to c
the geometry of the sample, i.e., the triangular geometry.
the multivortex states withL55 andL56, the separation of
vortices becomes invisible in the contour plots of t
Cooper-pair density, which show one big vortex in the ce
ter. The reason is that the maximum Cooper-pair density
the axis between two vortices is very low. Therefore,
show the phase of the order parameter in Figs. 7~d! and 7~e!
for the multivortex states withL55 at H0 /Hc251.27 and
with L56 atH0 /Hc251.345. Phases near zero are given
light regions and phases near 2p by dark regions. In both
cases there is a coexistence of a giant vortex in the center
three separated vortices around it placed in the direction
the corners. Taking a loop around the giant vortex, the ph
changes, respectively, by 232p and 332p, which means
that the vorticity of the giant vortex is 2 in the case of t
L55 multivortex state and 3 in the case of theL56 multi-
vortex state. Notice also that forL56 the geometry of the
giant vortex is not axial symmetrical, but triangular. Sta
with L.6 are always giant vortex states as we also found
the square. With increasingL this giant vortex grows, and fo
large vorticities superconductivity only occurs in the corne
of the triangle. Further increasing the field pushes the su
conductivity more to the corner until these corners beco
normal too at the superconducting/normal transition field

For the circular disk we find multivortex states with vo
ticity L52, 3, 4, and 5@see Figs. 1~a! and 1~b!#. Figures.
8~a!–8~d! show the Cooper-pair density for the multivorte
states with vorticityL52, 3, 4, and 5 atH0 /Hc250.495,

FIG. 6. The multivortex positions of theL53 state in a square
at applied magnetic fieldsH0 /Hc250.545, 0.62, 0.695, and 0.77.
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0.62, 0.965, and 0.82, respectively. High Cooper-pair den
is given by dark regions and low by light regions. Multivo
tex states for disks were already studied in previous pa
~see the Introduction!. Therefore, in this paper we only stre
that in a disk the multivortices are positioned on a rin
which means that also in this case the sample impose
symmetry on the vortex lattice.

From the study of the Cooper-pair density and the ph
of the order parameter we learned that~i! multivortex states
nucleate in disks as well as in squares and triangles for
eral values of the vorticityL, and~ii ! the vortex lattices try to
have the same geometry as the sample.

C. Magnetic field distributions: Demagnetization effects

Since we studied samples with finite thicknesses, dem
netization effects are important and therefore we had to s
for the magnetic field distribution around the sample. In t
section we will describe the magnetic field distribution f
the square. The results for the disk and the triangle are an
gous.

FIG. 7. ~a–c! The Cooper-pair density for the multivortex stat
in a triangle with L52, 3, and 4 atH0 /Hc250.495, 0.82, and
0.745, respectively. High Cooper-pair density is given by dark
gions and low Cooper-pair density by light regions.~d,e! The phase
of the order parameter for the multivortex states withL55 at
H0 /Hc251.27 and withL56 atH0 /Hc251.345. Phases near zer
are given by light regions, phase near 2p by dark regions.
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In Figs. 9~a!–9~f! the magnetic field distribution is show
for the square geometry for the state with vorticityL52 at
H0 /Hc250.42, 0.52, and 0.62~see open circles in Fig. 3!,
and with vorticity L53 at H0 /Hc250.62, 0.72, and 0.82
respectively. High magnetic field is given by dark regio
and low by light regions. The magnetic field is clearly no
uniform in and around the sample. The dark spots in
square are the vortices and the dark regions near the sa
surface are due to the compression of the magnetic l
when they are forced to go around the sample. These reg
are responsible for the demagnetization effects. It is cl
that with increasing external field and fixed number of vo
tices, the demagnetization effects are more pronounced,
cause the superconductor has to expel more magnetic fi
In Figs. 9~a!, 9~b!, 9~d!, and 9~e! the superconducting state
a multivortex state and the separated vortices are clearly
ible, while in Figs. 9~c! and 9~f! where H0 /Hc2

.HMG /Hc2'0.5825 and 0.7825 forL52 and 3, respec-
tively, there is one giant vortex in the center. With increas
field the vortices move towards the center and atH05HMG

they combine to one giant vortex state. Notice that the gi
vortex state is not necessarily axial symmetric as in the c
of the disk.

In Figs. 10~a!–10~d! the magnetic field distribution is
shown for the square geometry for the state with vortic
L54 at the magnetic fields indicated by the open circles
Fig. 3, i.e.,H0 /Hc250.72, 0.82, 0.92, and 1.02, respective
Now, there is no transition from the multivortex to gia
vortex state and the four vortices are clearly visible as
dark spots. Notice that from the magnetic field distributi
one clearly observes that the vortex lattice is a square lat

-

FIG. 8. ~a–d! The Cooper-pair density for the multivortex stat
in a disk with vorticityL52, 3, 4, and 5 atH0 /Hc250.495, 0.62,
0.965, and 0.82, respectively. High Cooper-pair density is given
dark regions and low by light regions.
5-7



e
sin

a
ot

a
or
d
o

tic
ld

ra

in
as

i
nt
et
th

el
le
e
-

ap-

e-

om-
the

ple
to-
nce,
ple

ne-

es
eld

he

ht

he
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i.e., the lattice geometry is the same as the sample geom
and that the vortices move towards the center with increa
field.

For the multivortex states with higher vorticity, the sep
rated multivortices are no longer visible in the contour pl
of the magnetic field distribution. The problem is the same
for the contour plots of the Cooper-pair density, i.e., the v
tices are too close to each other and the spots correspon
to high magnetic fields are overlapping in the picture. F
high vorticity and high external fields, the total magne
field appreciably differs from the externally applied fie
only in the corners of the square. Figures 11~a! and 11~b!
show the magnetic field distribution for the same configu
tion as in Figs. 5~a! and 5~b!, i.e., the L511 state at
H0 /Hc2'1.9 and 1.95, respectively. A local decrease
magnetic field is given by the light regions and an incre
by the dark regions. In both pictures the magnetic field
only substantially expelled in the corners and conseque
only near the corners is there a higher density of magn
field lines at the outside of the square. Further increasing
field destroys the superconductivity, and thus the total fi
becomes equal to the external one over the whole samp

Next, we investigate the dependence of the magnetic fi
on z. Figures 12~a!–12~f! show the magnetic field distribu

FIG. 9. The magnetic field distribution for the square for t
state with vorticityL52 at H0 /Hc250.42 ~a!, 0.52 ~b!, and 0.62
~c!, and with vorticityL53 atH0 /Hc250.62~d!, 0.72~e!, and 0.82
~f!. High magnetic field is given by dark regions and low by lig
regions.
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tion for theL54 state in a square for different values ofz,
z/j50.0, 0.1, 0.3, 0.6, 1.0 and 10.0, respectively. The
plied magnetic field isH0 /Hc250.77. High magnetic field is
given by dark regions and low magnetic field by light r
gions. In the plane of the superconductor, i.e.,z50, the mag-
netic field that penetrates the superconductor is either c
pressed into multivortices or expelled to the outside of
sample. Therefore, the four dark spots in Fig. 12~a! indicate
that the vortices and the light regions towards the sam
boundary are due to the expulsion of the magnetic field
wards the outside of the superconductor. As a conseque
the magnetic field increases in a small strip near the sam
boundary. With increasingz and uzu.d/2, the magnetic field
will still be influenced by the superconductor. The demag
tization effects decrease with increasingz and the compres-
sion of the magnetic field lines into vortices becom
smaller. Therefore, the vortices and the expulsion of the fi

FIG. 10. The magnetic field distribution for the square for t
state with vorticityL54 at H0 /Hc250.72 ~a!, 0.82 ~b!, 0.92 ~c!,
and 1.02~d!. High ~low! magnetic fields are given by dark~light!
regions.

FIG. 11. The magnetic field distribution for theL511 state in a
square atH0 /Hc2'1.9 ~a! and 1.95~b!. High ~low! magnetic fields
are given by dark~light! regions.
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will become less pronounced with increasingz. At z50.1j,
the vortices and the results of the magnetic field expuls
are still visible by the dark and light regions@see Fig. 12~b!#.
In Figs. 12~c! and 12~d!, at z50.3j and 0.6j, respectively,
the contrast in the picture decreases, which means tha
influence of the superconductor, i.e., the compression
expulsion of the magnetic field lines, decreases. Atz51.0j
the magnetic field just slightly decreases right above the
perconductor compared to the external field@see Fig. 12~e!#.
At z510.0j the total magnetic field is homogeneous. F
away from the superconductor, the magnetic field is not
fluenced by the superconductor and equals the external fi
This is clearly shown in Fig. 12~f!.

D. Superconducting current density

When a superconducting sample is placed in an exte
magnetic field, the magnetic field is expelled from the sup
conductor due to screening currents near the sample bo
ary. The direction of the screening currents is such that
corresponding magnetic field is opposite to the external o
which leads to a lower total field in the superconductor. T
magnetic field penetrating the superconductor creates

FIG. 12. The magnetic field distribution for theL54 state in a
square for different values ofz; z/j50.0 ~a!, 0.1~b!, 0.3~c!, 0.6~d!,
1.0 ~e!, and 10.0~f!. The applied magnetic field isH0 /Hc250.77.
High magnetic field is given by dark regions, low magnetic field
light regions.
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rents flowing in a direction opposite to the screening c
rents. The competition between these currents and
screening currents results in the existence of vortices.

Figures 13~a!–13~d! show vector plots of the supercurre
in the superconducting square for theL51 state atH0 /Hc2
50.27, theL52 state atH0 /Hc250.42, theL53 state at
H0 /Hc250.67, and theL54 state atH0 /Hc250.745, re-
spectively. Figures 13~e!–13~h! show the corresponding con
tour plots of the phase of the order parameter. Phases
2p are given by dark regions and phases near zero by l
regions. From the phase of the order parameter one can
ily determine the number and the positions of the vortices
Fig. 13~a! it is clear that the screening currents near t
sample boundary flow clockwise and the currents around

FIG. 13. ~a–d! Vector plots of the supercurrent in the superco
ducting square and~e–h! contour plots of the phase of the orde
parameter for theL51 state atH0 /Hc250.27 ~a,e!, theL52 state
at H0 /Hc250.42 ~b,f!, the L53 state atH0 /Hc250.67 ~c,g!, and
the L54 state atH0 /Hc250.745 ~d,h!. Phases near 2p are given
by dark regions and phases near zero by light regions.
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vortex in the center counterclockwise. In Figs. 13~b!, 13~c!,
and 13~d! there are currents flowing counterclockwi
around two, three, and four vortices, respectively. Arou
one vortex, the size of the current, indicated by the length
the arrows in Figs. 13~a!–13~d!, is not the same for every
angle. In Fig. 13~b! it is clear that in the region between th
two vortices the currents around these two vortices can
each other out. Also, in the case ofL53 andL54 the cur-
rents around the different vortices cancel out each othe
the center of the sample@see Figs. 13~c! and 13~d!#.

From Figs. 13~a!–13~d! one expects antivortices toward
the corners, because there are some spots where the cu
flow in clockwise direction. That these are not really antiv
tices can be seen from the phase of the order parameter@Figs.
13~e!–13~h!#. By going around an antivortex, the pha
changes with22p and this is clearly not the case her
Moreover, the Cooper-pair density, shown in Figs. 4~a!–4~c!,
is not zero at these positions. In fact they are due to ba
flows, which are well known in hydrodynamics.

Next, we investigate the superconducting current den
in the triangular sample. Figures. 14~a!–~14c! show vector
plots of the supercurrent in the superconducting triangle

FIG. 14. ~a–c! Vector plots of the supercurrent in the superco
ducting triangle and~d–f! contour plots of the phase of the ord
parameter for theL51 state atH0 /Hc250.27 ~a,d!, theL52 state
at H0 /Hc250.495~b,e!, and theL53 state atH0 /Hc250.82 ~c,f!.
Phases near 2p are given by dark regions and phases near zero
light regions.
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the L51 state atH0 /Hc250.27, theL52 state atH0 /Hc2
50.495, and theL53 state atH0 /Hc250.82, respectively.
Figures 14~d!–14~f! show the contour plots of the corre
sponding phase of the order parameter. Phases near 2p are
given by dark regions and phases near zero by light regio
The behavior of the supercurrent in triangular samples
similar to the one in square samples. The screening curr
flow clockwise and the current around the vortices in t
opposite direction. The currents around different vortic
cancel each other in the region between them. Towards
corners, there are some spots where the current flows
clockwise direction, but these spots are not antivortices. T
can be seen from the phase of the order parameter@see Figs.
14~d!–14~f!# and from the Cooper-pair density@see Figs.
7~a! and 7~b!#.

E. Stability of the vortex states

Not only the stability region of the multivortex states wi
respect to the giant vortex states depends on the sample
ometry, but also the stability of each individual superco
ducting state is sensitive to the geometry. In Fig. 15 we sh
the magnetic field rangeDH over which the vortex state with
vorticity L is stable, i.e.,DH5Hexpulsion2Hpenetration@see also
Figs. 16~a! and 16~b!#, as a function of the vorticityL, for
L<6 and in the inset forL>6. For the disk the result is
shown by the open circles, for the square by the op
squares, and for the triangle by the open triangles where
curves are guides to the eye. For the circular disk the sta
ity region DH/Hc2 uniformly decreases with increasingL
with a slight dip atL52,3. The square and the triangle e
hibit a peak structure in the regionL,5. For the square we
find that the state withL54 is stable over a larger magnet
field region than the state with vorticityL53, which is a
consequence of the fact that the vortex lattice tries to k
the same geometry as the sample. For the triangle we fin
peak atL53 and a dip atL52 for the same reason. Notic
that ~i! the peak structure is more pronounced for structu

-

y

FIG. 15. The magnetic field range over which the vortex sta
with vorticity L are stable as a function of the vorticityL for the
disk ~open circles, solid curves!, the square~open squares, dashe
curves!, and the triangle~open triangles, dotted curves!.
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that fit the triangular Abrikosov lattice more closely;~ii ! for
L.4 no clear peaks are found;~iii ! the vortex states in the
square and circle geometry have almost the same stab
range forL<2 andL>6; ~iv! for L>4 the stability range
for the vortex state in the triangular geometry becomes s
stantially smaller than that for the other two geometries t
have less sharp corners. Thus sharp corners decrease th
bility range of the vortex states; and~v! Fig. 2, which shows
the extra flux needed to increase the vorticity by one u
contains complementary information to Fig. 15.

F. H -T phase diagram

Until now, all our calculations were done for fixed tem
peratureT. Now we will include temperature and our later
dimensions and fields will be expressed in the ze
temperature resultsj(0) andHc2(0), respectively. Tempera
ture will be expressed in units of the zero-magnetic-field c
ticial temperatureTc0. We take the surface area of ou
samplesS516pj2(0) and the thicknessd50.1j(0).

The H-T phase diagram is shown in the inset of Fig.
for the disk ~solid curves!, the square~dashed curves!, and
the triangle~dash-dotted curves! for the states with vorticity
L50 andL51, thus for low fields and temperatures close
Tc0. The thick curves are the superconducting/normal tra
tions and the thinner curves indicate the expulsion and
penetration fields, i.e., the boundaries of the stability reg
of the state with vorticityL. The lower thin curves show th
transition from the state with vorticityL51 to L50 with
decreasing field~expulsion! and the upper thin curves sho
the transition fromL50 to L51 with increasing field~pen-

FIG. 16. ~a! The expulsion field and~b! the penetration field as
a function of the vorticityL for the disk~solid curves, circles!, the
square~dashed curves, squares!, and the triangle~dotted curves,
triangles!.
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etration!. Figure 17 shows theH-T phase diagram for highe
fields. For the sake of clarity only the superconductin
normal transitionHc3 is shown as a function of temperatur
The black dots indicate the transition fields between the
ferent L states. For every ~fixed! temperature the
superconducting/normal transition field is highest for the
angle and lowest for the disk. For every~fixed! magnetic
field, the critical temperature is highest for the triangle a
lowest for the disk. This means that for sharper corners,
critical temperature and critical field are enhanced due to
enhanced surface superconductivity.15 These results are in
good agreement with the phase diagrams found in Refs.
23, and 24.

IV. CONCLUSIONS

We investigated theoretically the influences of the geo
etry of thin superconducting samples on the vortex confi
ration. Therefore, we considered superconducting dis
squares, and triangles with the same surface areaS5p16j2

and the same thicknessd50.1j for k50.28. For these three
geometries we calculated the free energy and the magne
tion of the different giant and multivortex states as a funct
of the applied magnetic field, and we indicated the multiv
tex to giant vortex transitions for fixed vorticityL. Multivor-
tex states were found for disks as well as for squares
triangles for several values of the vorticity. For givenL, the
vortex lattice was different in the three geometries due to
fact that it tries to adapt to the geometry of the sample. T
influences considerably the stability range of the differe
vortex states. For squares and triangles we found magn
field regions where there is a coexistence between a g
vortex state in the center and several separated vortices in

FIG. 17. TheH-T phase diagram for the disk~solid curve!, the
square~dashed curve!, and the triangle~dash-dotted curve!. Only
the superconducting/normal transitionHc3 is shown as a function of
temperature. The black dots indicate the transitions. The in
shows theH-T phase diagram for the states with vorticityL50 and
L51. The thick curves are the superconducting/normal transiti
and the thinner curves indicate the expulsion and the penetrati
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direction of the sample corners. Near the superconduc
normal transition we do not find multivortices, antivortice
or a combination of them, but we find surface supercond
tivity. Only extremely close to the superconducting/norm
transition are vortex configurations containing antivortic
possible. We studied the magnetic field distribution acr
the superconductor and around the superconductor, w
clearly shows the demagnetization effects, which are v
important for samples of finite thickness. The vector plots
the superconducting current showed spots where the cu
flows in clockwise direction. From the phase of the ord
parameter and the Cooper-pair density we conclude
these spots are not antivortices, but correspond to back
currents that are typically present near sharp obstacles,
corners in our case. We also investigated the stability of
vortex states with vorticityL by calculating the magneti
field range over which the vortex states with vorticityL are
stable. We found that this stability range depends sensiti
on the sample geometry. As a function ofL we found en-
ie

.

.

-

y
.

10451
g/
,
c-
l
s
s
ch
ry
f
nt

r
at
w
e.,
e

ly

hanced stability for the triangle forL53 and for the square
for L54. In the last section, we also included temperature
calculating aH-T phase diagram for the disk, the square, a
the triangle. With sharper sample corners, we found that
fixed temperature, the superconducting/normal transi
field Hc3 moves to higher fields, and for fixed field, the cri
cal temperature increases.
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25J. Bonča and V.V. Kabanov, Phys. Rev. B65, 012509~2002!.
26R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B47, 8016

~1993!.
5-12


