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Dependence of the vortex configuration on the geometry of mesoscopic flat samples

B. J. Baelus and F. M. Peetérs
Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium
(Received 28 June 2001; revised manuscript received 7 December 2001; published 26 Febryary 2002

The influence of the geometry of a thin superconducting sample on the penetration of the magnetic field lines
and the arrangement of vortices are investigated theoretically. We compare the vortex state of superconducting
disks, squares, and triangles with the same surface area having nonzero thickness. The coupled nonlinear
Ginzburg-Landau equations are solved self-consistently and the important demagnetization effects are taken
into account. We calculate and compare quantities such as the free energy, the magnetization, the Cooper-pair
density, the magnetic field distribution, and the superconducting current density for the three geometries. For
given vorticity the vortex lattice is different for the three geometries, i.e., it tries to adapt to the geometry of the
sample. This also influences the stability range of the different vortex states. For certain magnetic field ranges
we found a coexistence of a giant vortex placed in the center and single vortices towards the corners of the
sample. ThéH-T phase diagram is obtained for the three investigated geometries and we found that the critical
magnetic field is substantially enhanced for the triangle geometry.
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[. INTRODUCTION cular symmetrig giant vortex states or the superconducting/
normal transition were investigated. Even in type-l supercon-
In mesoscopic samples there is competition between ductors multivortex states in diské*and ring®! were
triangle configuration of the vortex lattice, being the lowest-predicted. It was found that if the disk or the ring is large
energy configuration in bulk materighnd filmg, and the enough, the giant vortex nucleates into a multivortex state in
boundary, which tries to impose its geometry on the vortexwhich the vortices are situated on a ring. In a ring geometry,
lattice. For example, a circular geometry will favor vortices we found that breaking the circular symmetry through a non-
situated on a ring near the boundary, and only far away froneentral location of the hole favors the multivortex stite.
the boundary its influence diminishes and the triangular latThis means that by changing the geometry, the giant vortex
tice may reappear. Therefore, it is expected that differenstate transits into a multivortex state.
geometries will favor different arrangements of vortices and Mesoscopic superconductors with noncircular geometries
will make certain vortex configurations more stable than oth-have attracted less attention. Moshchallet\al !’ measured
ers. In small systems vortices may overlap so strongly that ithe superconducting/normal transition in superconducting
is more favorable to form one big giant vortex. The latterlines, squares, and square rings using resistance measure-
will preferably have a circular geometry. As a consequence itnents. Bruyndoncet al'® calculated theH-T phase dia-
is expected that the giant to multivortex transition will be gram for a square with zero thickness in the framework of
strongly influenced by the geometry of the boundary as willthe linearized Ginzburg-Landau theory, which is only valid
also be the stability of the giant vortex configuration. near the superconducting/normal boundary. They compared
These issues and the dependence of the stability of thimeir results with theH-T phase boundary obtained from
giant vortex configuration and of the different multivortex resistance measurements. Foreiral 1° studied square loops
configurations on the geometry of the sample will be inveswith leads attached to it and found inhomogeneous Cooper-
tigated in the present paper. As an example, we will compareair distributions in the loop with enhancements near the
the most important geometries: the circular disk, the squaresorners of the square loop. Schweigert and Peétérgal-
and the triangle. culated the nucleation field as a function of the sample area
Mesoscopidcirculan disks and rings have been the most for disks, squares, and triangles with zero thickness. Jadallah
popular in this respect. Experimentally, the magnetization ot al?® computed the superconducting/normal transition for
superconducting disks and rings has been measured asnesoscopic disks and squares of zero thickness. For macro-
function of the externally applied magnetic fiélcf Several  scopic squares, the magnetic field distribution and the flux
transitions between different superconducting states werpenetration are investigated in detail by experimental obser-
found, and the magnetization depends sensitively on size andations using the magneto-optical Faraday effect and by
temperature. The main part of the theoretical studies coverefirst-principles calculations that describe the superconductor
disk$'~® and ringS~** of zero thickness. In this case one canas a nonlinear anisotropic conductbin the latter case the
neglect the magnetic field induced by the supercurrents angenetration of the magnetic field occurs continuously. In
one assumes that the total magnetic field equals the extemacroscopic samples the penetration of individual fluxoids is
nally applied magnetic field, which is uniform. A limited not so important in the theoretical description of the mag-
number of studies considered disks® and rings® with fi-  netic response of the superconductor, but it turns out to be
nite thickness. Then, the finite thickness of the disks influ-essential in our mesoscopic samples. Recently, Aftalion and
ences the magnetic field profile and it is necessary to takBu®® studied cylindrical square-shaped superconductors
into account the demagnetization effects. Often only(tire ~ within the Ginzburg-Landau theory.
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Chibotaru et al. investigated the vortex entry and the . d )
nucleation of antivortices in infinitely thin superconducting —A3pA=—68(2)j2p, (1b)
square$® and triangle¥* using the linearized Ginzburg- K?
Landau theory. Within this linear theory they studied the

; " “where

superconducting/normal transition and they found near this
transition the nucleation of multivortices, antivortices, and 1
combination of these two instead of the expected surface J20=5 (W* Vop¥ — W V,p W) — | |24, (1o
superconductivity. They found that those antivortices appear 2i

in order for the vortex state to preserve the symmetry ofg the density of superconducting current. The superconduct-

the sample boundary. They also calculated thd phase . . e 2
diagram for the square and the triangle. Recently “aonc'"9, Wave function satisfies the boundary conditiors Pzp

and Kabano® studied thex—o limit and extended those —A)¥|n=0 normal to the sample surface aAe- %HOP%
results for thin superconducting squares, focusing the nor@r away from the superconductor. Here the distance is mea-
linear Ginzburg-Landau theory. Within this nonlinear theorySured in units of the coherence lengththe vector potential
they showed that the vortex/antivortex configurationin C2/2e¢, and the magnetic field inHc,=ch/2ef
becomes rapidly unstable when moving away from the=x\2H¢. The superconductor is placed in the) plane,
superconducting/normal transition. the external magnetic field is directed along thaxis, and
In the present paper we consider superconductors of finite indices 2D, 3D refer to two- and three-dimensional op-
thickness and study the vortex configurations deep inside th@rators, respectively.
superconducting state, i.e., far from the superconducting/ TO solve the system of Eqéla) and(1b), we generalized
normal boundary, for arbitrary value af. Our main focus the approach of Ref. 14 for circular disks to superconductors
will be on the influence of the geometry of the supercon-With an arbitrary flat geometry. We apply a finite-difference
ductor on the vortex configuration and its stability. Our the-representation for the order parameter and the vector poten-
oretical analysis is based on a full self-consistent numericdiial on a uniform Cartesian space grig,y), with typically
solution of the coupled nonlinear Ginzburg-Landé&BL) 128x 128 grid points for the area of the superconductor, and
equations for arbitrary value of. No a priori shape or ar- Use the link variable approatthand an iteration procedure
rangement of the vortex configuration is assumed. The madrased on the Gauss-Seidel technique to findThe vector
netic field profile near and in the superconductor is obtainedpotential is obtained with the fast Fourier transform tech-
self-consistently, and therefore the full demagnetization efnique where we se1A|X|=RS,‘y|=RS=Ho(x,—y)/2 at the
fect is included in our approach. _ boundary of a box with a larger space grid of size typically 4
The paper is organized as follows: In Sec. Il we describgjmes the superconductor area.
the theoretical formalism. Our results are presented in Sec. For circular configurations such as disks the giant vortex
Ill. We calculate and compare the free energy and the magstate is characterized by the total angular momentum
netization for disks, squares, and triangles with the same SuthroughW = y(p)exp(L ¢), wherep and ¢ are the cylindri-
face area. Next, we make a distinction between multivortexey| coordinatesL is the winding number and gives the vor-
states and giant vortex states and we investigate the influenggity of the system. Due to the nonlinearity of the GL equa-
of the sample geometry on the vortex lattice. We also calcutions an  arbitrary superconducting state is generally a
late the magnetic field range over which the vortex stategnixture of different angular harmonics even in axially
with vorticity L are stable in disks, squares, and trianglessymmetric systems. Nevertheless, we can introduce an ana-
The magnetic field distribution and the current density arqog to the total angular momentuin which is still a good
studied and thed-T phase diagram is obtained. Finally, we guantum number and which is in fact nothing else then the
summarize our results in Sec. IV. number of vortices in the system.
For nonaxially symmetric systems there exist no axially
symmetric giant vortex states, and hence the superconduct-
Il. THEORETICAL FORMALISM ing state is always a mixture of different angular harmonics.
The vorticity L of a particular superconducting sample can
e calculated by considering the phasef the order param-
C>éter along a closed loop near the boundary of the sample,
fhere the total phase difference is alwayg=LX27. In
nonaxially symmetric systems three possible vortex states
exist: (i) a multivortex state that contains separate vortices,

and co-workers? As fo_r thin disks d<_§,)\) itis allowed to (i) a superconducting state that contains one giant vortex in
average the GL equations over the disk thickness for sampletﬁe center, andiii ) a state that is a mixture of both: a giant

of arbitrary geomiztry. Using dimensionless vziriables and th%rtex in the center surrounded by single vortices. The giant
London gauge dik=0 for the vector potentiah, we write  yortex is not necessarily circular symmetric as in the case of
the system of GL equations in the following form: a circular disk, but it may be deformed due to the specific
shape of the sample boundary.
_ R To find the different vortex configurations, which include
(—iVop— AW =W (1—|V¥|?), (1a  the metastable states, we search for the steady-state solutions

In the present paper, we consider thin superconductin
samples having the same volume but with different geometr
which are immersed in an insulating medium in the presen
of a perpendicular uniform magnetic fieldly. To solve this
problem we follow the numerical approach of Schweigert
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FIG. 1. The free energy and the magnetization as a function of the applied magnetic field for the disk, the square, and the triangle with
the same surface ar&e= w16£2 and thicknessl=0.1¢ for k=0.28.(a,c,8 The free energy of the giant vortex stdsmlid curveg and the
multivortex stategdashed curvesand the multivortex to giant vortex transition fiel@gpen circleg (b,d,f) The magnetization of the states
(solid curve$ and the ground statghick solid curve.

of Egs.(1a) and(1b) starting from different randomly gen-

erated initial conditions. Then we increase/decrease slowly NT)= L (4b)
the magnetic field and recalculate each time the exact vortex VII=TITl

structure. We do this for each vortex configuration in a mag-

netic field range where the number of vortices stays the Hop(T) = Hop(0) 1— T (40)
same. By comparing the dimensionless Gibbs free energies c2 c2 Teol’

of the different vortex configurations, _ . -
where T, is the critical temperature at zero magnetic field.

We will only explicitly insert temperature if we consider the
H-T phase diagrams, while the other calculations are for a
certain fixed temperature. Notice further that the Ginzburg-
Landau parametet=\/¢ is independent of the temperature.

F=V*{ﬁ;ﬂﬁ—ﬂa-bo—mwﬂdﬁ (2)

where integration is performed over the sample volWwhe

andﬁo is the vector potential of the uniform magnetic field,
we find the ground state, the metastable states, and the mag-
netic field range over which the different states are stable. As a typical example, we consider superconducting disks,
The dimensionless magnetization, which is a direct measurequares, and triangles with the same surface ﬁpea-]_(sgzy
of the expelled magnetic field from the sample, is defined ashe same finite thickness=0.1¢ and the same Ginzburg-
Landau parametet=0.28, which is typical for AE Thus the
M = (H)—Ho superconducting disk has a radids-4.0¢, the square has a
A7 width W=7.09C¢, and the triangle has a widthV/
=10.774.

IIl. RESULTS

©)

whereH, is the applied magnetic fieldH) is the magnetic
field averaged over the sample aFcE rotA.

The temperature is indirectly included i& A\, Hg,
whose temperature dependence is given by

A. Free energy and magnetization

In the first step, we will compare the free energy and the
magnetization for the three geometries. In Figs) and 1b)
the free energy and the magnetization are shown for the disk
as a function of the applied magnetic field, in Fig&)land
1(d) for the square and in Figs(¢) and Xf) for the triangle.

£(0)

&T)= ﬁ, (4a)
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In Figs. 1a),1(c), and 1e) the free energy of the different fr—— T T ]
3.5 O giant vortex < giant vortex J

o ® giant vortex & multivortex
3.0F . ® multivortex <> multivortex 3

giant vortex states is given by solid curves and the free en-
ergy of the multivortex states by dashed curves. The open
circles indicate the transition from multivortex state to giant
vortex state at the transition fieltts, g . This transition is of
second ordel? Figures 1b), 1(d), and 1f) show the magne-
tization of the differentL states with thin curves and the
ground state is indicated by the thick curve. There exist vor-
tex states with vorticity up td.=11 for the disk and the
square and up to 13 for the triangle. The superconducting
state is destroyed aH./H.~1.95 for the disk, at
Hc3/H»~2.0 for the square, and .3/H,~2.5 for the tri-
angle. Thus for samples with sharp corners the
superconducting/normal transition moves to higher fiéd
fixed surface ared® Multivortex states can nucleate in the
disk for vorticity L=2, 3, 4, and 5 and in the square and the
triangle forL=2, 3, 4, 5, and 6. Moreover, for the disk, with
increasing field, the multivortex state always transits to a
giant vortex state for fixed., while for the square and the
triangle someL states are multivortex states over the whole
magnetic field range. For the triangle this is the case for the
states with vorticitL = 3, 4, 5, and 6, and for the square for
the states with.=4 and 5. This indicates that breaking the
axial symmetry favors the mult!vortex _state over the giant g 2 (@) The flux ¢, +, corresponding to the thermody-
vortex state. In some magnetic field regions, the vortex statggamic transition fieldH, ., ., as a function of the vorticity. for
exhibit a paramagnetic response, i-eM <0. This occurs in  the disk(circles, for the squarésquarek and for the triangldtri-
the disk for metastable states with=1, 4—8 and in the angles. The curves are the fitted result®) The flux A¢ corre-
square for metastable states witk=1, 4, and 5. For the sponding to the magnetic field range needed to increase the vorticity
triangle —M is always positive, i.e., only diamagnetic be- of the ground state frorh to L+1 as a function of the vorticity
havior is observed. for the disk(solid curves, open circleésthe squardgdashed curve,

In order to stress the difference between macroscopic angpen squargsand the trianglédotted curve, open triangles
our mesoscopic superconductors we show in Fig) the
magnetic flux¢, _,, ;1 passing through the superconductor dL_L+1 atblL
at the them_lodynamic transition fie}fli!ﬁ,_+1 as a funct_ion (L+1) g “1tcl’
of the vorticity L for the three geometries. We scaled this flux
by (L +1)¢o, which is the expected flux when no boundary with a=3.108 37,b=0.617 92, anat=0.598 25 for the disk
effects are important. The result for the disk is given by[solid curve in Fig. 2a)], a=3.197 69,b=0.609 62, anct
circles, for the square by squares and for the triangle by=0.58396 for the squar&lashed curve anda=3.586 14,
triangles. In the figure we use open symbols for transition)=0.661 14, and=0.6031 for the trianglédotted curve
between two giant vortex states, filled symbols for transitions  Another important quantity is the amount of flux increase
between a multivortex and a giant vortex state, and crossegeeded to increase the vorticity of the ground state ftoim
symbols for transitions between two multivortex states. The_+ 1 which is plotted in Fig. @) for the disk(solid curves,
symbol for the largestt corresponds to the superconducting/ open circleg, the squaredashed curve, open squareand
normal transition. For the disk we fid—L +1 transitions  the triangle(dotted curve, open trianglesFor 3<L <11,
between a giant vortex and a multivortex statelfer1 and  thjs value is almost independent bfand of the geometry
2, while the other transitions occur between two giant vorteXand equalsA ¢/ ¢o=1.1, i.e., it is approximately equal to,
states. For the square we find transitions between a multivopyt still different from, the flux quantung,. Notice that
tex state and a giant vortex state for=2, 3, and 6 and A ¢/¢,>1 for anyL, which is a consequence of the demag-
between two multivortex states for=4 and 5. For the tri- netization effects.
angle, transitions between a giant and a multivortex state
occur forL=1, 2, and 6 and between two multivortex states
for L=2, 3, and 4. Notice further that far>6, the value of
&L _L+1/(L+1)¢p, becomes almost independent loffor To distinguish whether the superconducting state is a mul-
the three geometriesp, ., . 1/(L+1)¢o~1.3 for the disk tivortex state or a giant vortex state and to determine the
and the square angl, ., .;/(L+1)¢o~1.4 for the triangle. ~multivortex to giant vortex state transition field, we consid-
The magnetic fluxé, ., ., passing through the supercon- ered the Cooper-pair density’ |2, in the center of the
ductor at the thermodynamic transition fi¢d ., ., can be  superconductdf® We can be sure that the superconducting
fitted by the following formula: state is a multivortex state |2, .70 for L>1. The rea-

¢L—>L+1/(L+1 )¢o

AY/Y,

B. Multivortex states
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FIG. 3. The Cooper-pair density in the center of the square as ¢
function of the applied magnetic field for the states with vorticity 4 [
L=2, 3, and 4. 4t

son is that giant vortices are always in the center of the 2

superconductor, and hen¢® %, .= 0. Figure 3 shows the ws
Cooper-pair density in the center of the square as a functior > Of
of the applied magnetic field. The Cooper-pair density
| |2, is finite for Ho/H<Hgw/H~0.5825 and
0.7825 forL=2 and 3, respectively, ang¥|2,,.,=0 for "
Ho/H>Hgm/Heo. For L=4 the Cooper-pair density in i 4 -
the center differs from zero over the whole magnetic field

region where thd.=4 state is stable. On the other hand, X/&

2 _ .
[ W[cene= 0 does not guarantee that the superconducting ¢ (a—0 The Cooper-pair density for a multivortex state in

state _is a giant vortex state. For exan_1p|e, the multivortex, square withL=2, 3, and 4 atH,/H,,=0.42, 0.67, and 0.745,
state in a square fdr=>5 shows four vortices away from the - respectively. High Cooper-pair density is given by dark regions, low
center situated on the diagonals and one vortex in the centefooper-pair density by light region&d,e The phase of the order
and hencg¥|Z,.=0. Therefore, we studied the Cooper- parameter for the multivortex states with=5 at Ho/H,=0.82
pair density distribution in detail. If two vortices are very and with L=6 at Hy/H.,=1.32. Phases near zero are given by
close to each other, then the Cooper-pair density on the axlght regions and phases neatr by dark regions.

between these two vortices will become very low too, which
means that the separation between two vortices becomes i
visible in the contour plots. Therefore we have to define
another criterion to determine the multivortex to giant vortex
transition. If the maximum between two minima in the
Cooper-pair densityi.e., the vorticegis lower than 0.5% of 9 o
the maximum Cooper-pair densiW|2maxin the sample, then phase clearly changes& in F|g._4(d) and 6x 2 in Fig.

we will say that the vortices form a giant vortex state instead"®- FOr L=>5 there are four vortices on a square and the
of a multivortex state. With this criterion we find that for the fifth vortex is in the center. The latter has clearly a vorticity

square geometry the=5 state is always a multivortex state Of 1. FOrL=6 there are also four vortices on a square and
and theL=6 state is a multivortex state fot,/H,,<1.37  the other vortices are in the center forming one giant vortex
and a giant vortex state foty/Hq,>1.37. with a vorticity of 2. Thus in this case we have the remark-
How do the multivortex states look like? Figuregay- able coexistence of a giant vortex in the center with a vor-
4(c) show the Cooper-pair density for a multivortex stateticity of 2 and four clearly separated vortices around it. For
with L=2, 3, and 4 aH,/H,=0.42, 0.67, and 0.745, re- this case the multivortex to giant vortex transition field is
spectively. High Cooper-pair density is given by dark regionsdefined as the field where separate vortices appear with de-
and low Cooper-pair density by light regions. Ho=2 the creasing field. This means that in Fig. 1 some states are in-
vortices are along the diagonal, for=3 the vortices are on dicated as multivortex, even though there exist§g@any
a triangle, and fot. =4 they are on a square. Fbr=4 only  vortex in the center with vorticity. >1. Thus we consider a
the multivortex state is found, which is favored over thestate no longer a giant vortex state when the fluxes of the
giant vortex state. The reason is that the square vortex latticeortex are not confined in a single connected region. Notice
easily fits in the sample. Figuredd# and 4e) show the also that not only the configuration of the multivortices tries

2 4

Bhase of the order parameter for the multivortex states with
L=5 at Hy/H,=0.82 and withL=6 at Hy/H ,=1.32.
Phases near zero are given by light regions and phases near
2 by dark regions. By going around the superconductor, the
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FIG. 5. The Cooper-pair density for the=11 state in a square L @ |
atHy/H.~1.9 (a) and 1.95(b). oL 4
to have the same geometry as the sample, but also the giant 3 ]
vortex geometry depends on the sample geometry. 4 | ]
We found that for this size of the square sample, the states S R T S S SR
with L>6 are always in the giant vortex state. With increas- 4 3 2 414 0 1 2 3 4
ing L this giant vortex grows and superconductivity only
occurs in the corners of the square. This is illustrated in Figs. X/&

5(a) and §b), which shows the Cooper-pair density for the
L=11 state aHy/H~1.9 and 1.95. It is obvious that fur-
ther increasing the field pushes the superconducting conde
sate more to the corners. At the superconducting/normal trardtark regions and low Cooper-pair density by light regions. In
sition field Hy/H,~2.0 the corners become normal too. the multivortex state with vorticit.=2 the vortices are
Only extremely close to the superconductor/normal transisituated along one of the perpendicular bisectors of the tri-
tion the order parameter exhibits additional separate zeros iangle. In theL =3 state the vortices are on a triangle that
the central part of the sample that correspond to the predictegasily fits in the sample, while the=4 state consists of
vortex/antivortex configurations. We refer to Refs. 23 and 24hree vortices on a triangle and the fourth vortex is situated
for a detailed study of these states. But note that our calcun the center. Instead of the square configuration as in the
lation also provides the amplitude of the order parametercase of the square geometry, the vortex lattice tries to copy
which turns out to be very smal|W|<10 3) in the central the geometry of the sample, i.e., the triangular geometry. For
area of the sample. As a consequence, additional zeros of thige multivortex states with =5 andL =6, the separation of
order parameter in this central region will lead to an ex-vortices becomes invisible in the contour plots of the
tremely small variation of the Cooper-pair density¥(>  Cooper-pair density, which show one big vortex in the cen-
<107%). The corresponding variation in the magnetic fieldter. The reason is that the maximum Cooper-pair density on
will also be extremely small{H/H,<10"°) and probably the axis between two vortices is very low. Therefore, we
impossible to detect experimentally. show the phase of the order parameter in Figd) @nd Te)
Figure 6 shows the positions of the vortices for the for the multivortex states with =5 atHy/H.,=1.27 and
=3 state in a square at applied magnetic fiellg/H.,  with L=6 atH,/H.,=1.345. Phases near zero are given by
=0.545, 0.62, 0.695, and 0.77. The latter field is just belowlight regions and phases neatr 2y dark regions. In both
the multivortex to giant vortex state transition field cases there is a coexistence of a giant vortex in the center and
Hem/H>=~0.7825. The solid lines indicate the squarethree separated vortices around it placed in the direction of
boundaries. With increasing field the vortices move towardshe corners. Taking a loop around the giant vortex, the phase
the center of the square andHh ), /H.,~0.7825 they com- changes, respectively, byx2 7 and 3X 2, which means
bine in the center and form one giant vortex with vorticity that the vorticity of the giant vortex is 2 in the case of the
L=3. In the multivortex state, one vortex is always situatedL =5 multivortex state and 3 in the case of the6 multi-
on the diagonal of the square, regardless of the magnetiortex state. Notice also that far=6 the geometry of the
field. The other two vortices are located such that the thregiant vortex is not axial symmetrical, but triangular. States
vortices form a equilateral triangle that is centered in thewith L>6 are always giant vortex states as we also found for
center of the square. Since the vortices move to the centehe square. With increasirigthis giant vortex grows, and for
with increasing field, the widthW of the triangular vortex large vorticities superconductivity only occurs in the corners
lattice decreases, i.e\WW=3.27, 2.89, 2.32, and 1.61 at of the triangle. Further increasing the field pushes the super-

FIG. 6. The multivortex positions of the=3 state in a square
ﬁE applied magnetic fieldd,/H.,=0.545, 0.62, 0.695, and 0.77.

Ho/H=0.545, 0.62, 0.695, and 0.77, respectively. conductivity more to the corner until these corners become
For the triangle geometry multivortex states nucleate witmormal too at the superconducting/normal transition field.
vorticity L=2, 3, 4, 5, and §see Figs. () and Xf)]. Fig- For the circular disk we find multivortex states with vor-

ures {a)—7(c) show the Cooper-pair density for a multivor- ticity L=2, 3, 4, and 5[see Figs. (a8 and Xb)]. Figures.
tex state withL=2, 3, and 4 aHq/H.,=0.495, 0.82, and 8(a)—8(d) show the Cooper-pair density for the multivortex
0.745, respectively. High Cooper-pair density is given bystates with vorticityL=2, 3, 4, and 5 atHy/H.,=0.495,
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I (a‘)

FIG. 8. (a—d The Cooper-pair density for the multivortex states
in a disk with vorticityL=2, 3, 4, and 5 aH,/H.,=0.495, 0.62,
0.965, and 0.82, respectively. High Cooper-pair density is given by
dark regions and low by light regions.

4 2 0 2 4 In Figs. 9a)—-9(f) the magnetic field distribution is shown
X/f; for the square geometry for the state with vortidity-2 at
Ho/H.=0.42, 0.52, and 0.62see open circles in Fig.)3
FIG. 7. (a—9 The Cooper-pair density for the multivortex states and with vorticity L=3 at Hy/H.,=0.62, 0.72, and 0.82,
in a triangle withL=2, 3, and 4 atH,/H.,=0.495, 0.82, and respectively. High magnetic field is given by dark regions
0.745, respectively. High Cooper-pair density is given by dark re-and low by light regions. The magnetic field is clearly non-
gions and low Cooper-pair density by light regiotthe) The phase  yniform in and around the sample. The dark spots in the
of the order parameter for the multivortex states with5 at  gsquare are the vortices and the dark regions near the sample
Ho/Hc=1.27 and withl. =6 atHo/Hc,=1.345. Phases near zero g face are due to the compression of the magnetic lines
are given by light regions, phase near By dark regions. when they are forced to go around the sample. These regions
are responsible for the demagnetization effects. It is clear
0.62, 0.965, and 0.82, respectively. High Cooper-pair densityhat with increasing external field and fixed number of vor-
is given by dark regions and low by light regions. Multivor- ices the demagnetization effects are more pronounced, be-
tex states for disks were already studied in previous papers;se the superconductor has to expel more magnetic field.
(see the Introductign Therefore, in this paper we only Stress |, rigs qa) 9(b), 9(d), and Je) the superconducting state is
tha_t in a disk the mu|t|_vort|(_:es are positioned on a g5 myltivortex state and the separated vortices are clearly vis-
which means that also in this case the sample imposes 'tﬁle, while in Figs. 9c) and 4f) where Ho/H,

symmetry on the vortex lattice. >Hue/H~0.5825 and 0.7825 fot.=2 and 3, respec-

From the study of the Cooper-pair density and the phas . . ) . .
of the order parameter we learned tliatmultivortex states 3"9'3” there 'S one giant vortex in the center. With increasing
Jield the vortices move towards the center andigtHyc

nucleate in disks as well as in squares and triangles for se . i ° )
eral values of the vorticity, and(ii) the vortex lattices try to  theYy combine to one giant vortex state. Notice that the giant

have the same geometry as the sample. vortex state is not necessarily axial symmetric as in the case
of the disk.
In Figs. 1Ga)—-10(d) the magnetic field distribution is
C. Magnetic field distributions: Demagnetization effects shown for the square geometry for the state with vorticity

Since we studied samples with finite thicknesses, demad-=4 at the magnetic fields indicated by the open circles in
netization effects are important and therefore we had to solvEig. 3, i.e.,Ho/H>=0.72, 0.82, 0.92, and 1.02, respectively.
for the magnetic field distribution around the sample. In thisNow, there is no transition from the multivortex to giant
section we will describe the magnetic field distribution for vortex state and the four vortices are clearly visible as the
the square. The results for the disk and the triangle are analalark spots. Notice that from the magnetic field distribution
gous. one clearly observes that the vortex lattice is a square lattice,
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FIG. 10. The magnetic field distribution for the square for the
state with vorticityL=4 atH,/H.,=0.72 (a), 0.82(b), 0.92(c),
and 1.02(d). High (low) magnetic fields are given by datkght)
regions.

tion for theL=4 state in a square for different valueszf
z/¢€=0.0, 0.1, 0.3, 0.6, 1.0 and 10.0, respectively. The ap-

FIG. 9. The magnetic field distribution for the square for the p!ied magnetic fiek_j i$1/Hc,=0.77. High_ mf_:lgnetic ﬁ.EId is
state with vorticityL =2 atHo/H,=0.42 (a), 0.52(b), and 0.62  9JIVEN by dark regions and low magnetic field by light re-

(0), and with vorticityL = 3 atHo/H.,=0.62(d), 0.72(e), and 0.82  910ns. In the plane of the superconductor, ze-0, the mag-
(f). High magnetic field is given by dark regions and low by light Netic field that penetrates the superconductor is either com-

regions. pressed into multivortices or expelled to the outside of the
sample. Therefore, the four dark spots in Fig(alandicate

i.e., the lattice geometry is the same as the sample geometiiat the vortices and the light regions towards the sample
and that the vortices move towards the center with increasingoundary are due to the expulsion of the magnetic field to-
field. wards the outside of the superconductor. As a consequence,
For the multivortex states with higher vorticity, the sepa-the magnetic field increases in a small strip near the sample
rated multivortices are no longer visible in the contour plotsboundary. With increasing and|z|>d/2, the magnetic field
of the magnetic field distribution. The problem is the same adVill still be influenced by the superconductor. The demagne-
for the contour plots of the Cooper-pair density, i.e., the vorlization effects decrease with increasingnd the compres-
tices are too close to each other and the spots correspondigPn of the magnetic field lines into vortices becomes
to h|gh magnetic f|e|ds are Over|apping in the picture_ Forsma.”er. Therefore, the vortices and the eXpUISion of the field
high vorticity and high external fields, the total magnetic
field appreciably differs from the externally applied field
only in the corners of the square. Figureqalland 11b)
show the magnetic field distribution for the same configura- 5
tion as in Figs. 88 and Jb), i.e.,, the L=11 state at
Ho/H~1.9 and 1.95, respectively. A local decrease in ’§’: 0
magnetic field is given by the light regions and an increase
by the dark regions. In both pictures the magnetic field is
only substantially expelled in the corners and consequently
only near the corners is there a higher density of magnetic -
field lines at the outside of the square. Further increasing the x/E
field destroys the superconductivity, and thus the total field
becomes equal to the external one over the whole sample.  F|G. 11. The magnetic field distribution for the=11 state in a
Next, we investigate the dependence of the magnetic fieldquare aH,/H,~1.9 (a) and 1.95b). High (low) magnetic fields
on z. Figures 12a)—12f) show the magnetic field distribu- are given by darklight) regions.

2 4 4 -2 2 4

0
x/&
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FIG. 12. The magnetic field distribution for the=4 state in a
square for different values af z/¢=0.0(a), 0.1(b), 0.3(c), 0.6(d),
1.0 (e), and 10.0(f). The applied magnetic field idy/H.,=0.77.
High magnetic field is given by dark regions, low magnetic field by
light regions.

will become less pronounced with increasingAt z=0.1¢,

the vortices and the results of the magnetic field expulsion
are still visible by the dark and light regiohsee Fig. 1&0)]. FIG. 13. (a—0 Vector plots of the supercurrent in the supercon-
In Figs. 14c) and 12d), at z=0.3¢ and 0.&, respectively, ducting square an@e—h contour plots of the phase of the order
the contrast in the picture decreases, which means that ti@rameter for thé =1 state aHo/H,=0.27(a,8, theL =2 state
influence of the superconductor, i.e., the compression angt Ho/Hc2=0.42(b.f), theL =3 state atHy/H,=0.67(c,9), and
expulsion of the magnetic field lines, decreaseszAtl.0¢ thel=4 state alHo /Hep=0.745(d,P). Phas_es near are given
the magnetic field just slightly decreases right above the suY dark regions and phases near zero by light regions.

perconductor compared to the external fidde Fig. 12)]. rents flowing in a direction opposite to the screening cur-

At z=10.C¢ the total magnetic field is homogeneous. Far s
away from the superconductor, the magnetic field is not in ents. The competition between these currents and the

. 8creening currents results in the existence of vortices.
fluenced by the superconductor and equals the external field. Figures 18a)—13d) show vector plots of the supercurrent
This is clearly shown in Fig. 1®). g P P

in the superconducting square for the=1 state atHy/H .,
=0.27, theL=2 state atHy/H.,=0.42, theL=3 state at
Ho/H:»=0.67, and theL=4 state atH,/H ,=0.745, re-
When a superconducting sample is placed in an externapectively. Figures 18)—13h) show the corresponding con-
magnetic field, the magnetic field is expelled from the supertour plots of the phase of the order parameter. Phases near
conductor due to screening currents near the sample boun#ésr are given by dark regions and phases near zero by light
ary. The direction of the screening currents is such that theegions. From the phase of the order parameter one can eas-
corresponding magnetic field is opposite to the external ondly determine the number and the positions of the vortices. In
which leads to a lower total field in the superconductor. TheFig. 13a) it is clear that the screening currents near the
magnetic field penetrating the superconductor creates cusample boundary flow clockwise and the currents around the

D. Superconducting current density
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FIG. 15. The magnetic field range over which the vortex states
with vorticity L are stable as a function of the vorticityfor the
disk (open circles, solid curvesthe squardopen squares, dashed
curves, and the triangldopen triangles, dotted curvyes

theL=1 state atHy/H.,=0.27, theL=2 state atHy/H»
=0.495, and thd. =3 state atH,/H.,=0.82, respectively.
Figures 14d)—14(f) show the contour plots of the corre-
sponding phase of the order parameter. Phases near®
given by dark regions and phases near zero by light regions.
The behavior of the supercurrent in triangular samples is
similar to the one in square samples. The screening currents
X/é Xl& flow clockwise and the current around the vortices in the
_ opposite direction. The currents around different vortices
FIG. 14. (a—0 Vector plots of the supercurrent in the supercon- cance| each other in the region between them. Towards the
ducting triangle andd—) contour plots of the phase of the order ., hars there are some spots where the current flows in a
parameter for thé =1 state aH,/H,=0.27(a,d, theL=2 state ., \vise direction, but these spots are not antivortices. This
atHo/H:;=0.495(b,8), and thel =3 state aHo/Hc,=0.82(C). o 1o seen from the phase of the order paraniseer Figs
Phases near#2 are given by dark regions and phases near zero b¥l.4(d)—14(f)] and from the Cooper-pair densifgee Figsi
light regions. 7(a and Tb)] '

vortex in the center counterclockwise. In Figs(d)3 13(c),
and 13d) there are currents flowing counterclockwise
around two, three, and four vortices, respectively. Around Not only the stability region of the multivortex states with
one vortex, the size of the current, indicated by the length ofespect to the giant vortex states depends on the sample ge-
the arrows in Figs. 1@&—-13(d), is not the same for every ometry, but also the stability of each individual supercon-
angle. In Fig. 18) it is clear that in the region between the ducting state is sensitive to the geometry. In Fig. 15 we show
two vortices the currents around these two vortices cancdhe magnetic field rang&H over which the vortex state with
each other out. Also, in the case lof3 andL=4 the cur-  vorticity L is stable, i.e.AH=H qyisiori- Hpenetratio S€€ also
rents around the different vortices cancel out each other ifrigs. 1&a) and 16b)], as a function of the vorticity., for
the center of the samp[see Figs. 1&) and 13d)]. L<6 and in the inset foL=6. For the disk the result is
From Figs. 182)—13d) one expects antivortices towards shown by the open circles, for the square by the open
the corners, because there are some spots where the currepggiares, and for the triangle by the open triangles where the
flow in clockwise direction. That these are not really antivor-curves are guides to the eye. For the circular disk the stabil-
tices can be seen from the phase of the order paraffétgr. ity region AH/H, uniformly decreases with increasirlg
13(e)-13h)]. By going around an antivortex, the phasewith a slight dip atL=2,3. The square and the triangle ex-
changes with— 27 and this is clearly not the case here. hibit a peak structure in the regidn<5. For the square we
Moreover, the Cooper-pair density, shown in Fig®)44(c),  find that the state with =4 is stable over a larger magnetic
is not zero at these positions. In fact they are due to backfield region than the state with vorticity =3, which is a
flows, which are well known in hydrodynamics. consequence of the fact that the vortex lattice tries to keep
Next, we investigate the superconducting current densitghe same geometry as the sample. For the triangle we find a
in the triangular sample. Figures. (&%(140 show vector peak atL=3 and a dip aL. =2 for the same reason. Notice
plots of the supercurrent in the superconducting triangle fothat (i) the peak structure is more pronounced for structures

E. Stability of the vortex states
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IQ‘ 0.2l FIG. 17. TheH-T phase diagram for the digkolid curve, the
' sqguare(dashed curve and the trianglgdash-dotted curye Only
0 the superconducting/normal transitibip; is shown as a function of

temperature. The black dots indicate the transitions. The inset
L shows theH-T phase diagram for the states with vorticity- 0 and
L=1. The thick curves are the superconducting/normal transitions

FIG. 16. (a) The expulsion field andb) the penetration field as  anq the thinner curves indicate the expulsion and the penetration.
a function of the vorticityl. for the disk(solid curves, circles the

square(dashed curves, squajesnd the triangle(dotted curves, . . . )
triangles. etration. Figure 17 shows thel-T phase diagram for higher

fields. For the sake of clarity only the superconducting/

that fit the triangular Abrikosov lattice more closelgi) for ~ nhormal transitiorH s is shown as a function of temperature.
L>4 no clear peaks are foundii) the vortex states in the The black dots indicate the transition fields between the dif-

square and circle geometry have almost the same stabilit?rent L states. For every (fixed temperature the
range forL=<2 andL=6: (iv) for L=4 the stability range uperconducting/normal transition field is highest for the tri-
for the vortex state in the triangular geometry becomes sup2ngdle and lowest for the disk. Eprheve(?xeg) mggneitlc g
stantially smaller than that for the other two geometries thafi€!d: the critical temperature is highest for the triangle anh
have less sharp corners. Thus sharp comers decrease the S{est for the disk. This means that for sharper comers, the

bility range of the vortex states: arfd) Fig. 2, which shows critical temperature and critical field are enhanced due to an
the extra flux needed to increase the vorticity by one unit€nhanced surface superconductiVityThese results are in
contains complementary information to Fig. 15. good agreement with the phase diagrams found in Refs. 18,

23, and 24.

F. H-T phase diagram

. . . V. NCLUSION
Until now, all our calculations were done for fixed tem- CONCLUSIONS

peratureT. Now we will include temperature and our lateral  \We investigated theoretically the influences of the geom-
dimensions and fields will be expressed in the zeroetry of thin superconducting samples on the vortex configu-
temperature resulig(0) andH,(0), respectively. Tempera- ration. Therefore, we considered superconducting disks,
ture will be expressed in units of the zero-magnetic-field cri-squares, and triangles with the same surface Srea16&2
ticial temperatureT,o. We take the surface area of our and the same thicknesis=0.1¢ for k=0.28. For these three
samplesS=167£%(0) and the thicknesd=0.1£(0). geometries we calculated the free energy and the magnetiza-
The H-T phase diagram is shown in the inset of Fig. 17tion of the different giant and multivortex states as a function
for the disk(solid curve$, the squarddashed curvgsand  of the applied magnetic field, and we indicated the multivor-
the triangle(dash-dotted curvgdor the states with vorticity tex to giant vortex transitions for fixed vorticity. Multivor-
L=0 andL=1, thus for low fields and temperatures close totex states were found for disks as well as for squares and
T.o- The thick curves are the superconducting/normal transitriangles for several values of the vorticity. For giventhe
tions and the thinner curves indicate the expulsion and theortex lattice was different in the three geometries due to the
penetration fields, i.e., the boundaries of the stability regiorfact that it tries to adapt to the geometry of the sample. This
of the state with vorticityL. The lower thin curves show the influences considerably the stability range of the different
transition from the state with vorticit =1 to L=0 with  vortex states. For squares and triangles we found magnetic
decreasing fieldexpulsion and the upper thin curves show field regions where there is a coexistence between a giant
the transition fromL=0 to L =1 with increasing fieldpen-  vortex state in the center and several separated vortices in the
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direction of the sample corners. Near the superconductingianced stability for the triangle fdr=3 and for the square

normal transition we do not find multivortices, antivortices, for L=4. In the last section, we also included temperature by
or a combination of them, but we find surface superconducealculating aH-T phase diagram for the disk, the square, and
tivity. Only extremely close to the superconducting/normalthe triangle. With sharper sample corners, we found that for
transition are vortex configurations containing antivorticesfixed temperature, the superconducting/normal transition

possible. We studied the magnetic field distribution acrossield H_; moves to higher fields, and for fixed field, the criti-
the superconductor and around the superconductor, whickg| temperature increases.

clearly shows the demagnetization effects, which are very
important for samples of finite thickness. The vector plots of
the superconducting current showed spots where the current
flows in clockwise direction. From the phase of the order
parameter and the Cooper-pair density we conclude that This work was supported by the Flemish Science Foun-
these spots are not antivortices, but correspond to backflogation (FWO-VI), the "Onderzoeksraad van de Universiteit
currents that are typically present near sharp obstacles, i.éAntwerpen” (GOA), the "Interuniversity Poles of Attraction
corners in our case. We also investigated the stability of th&rogram — Belgian State, Prime Minister’s Office — Federal
vortex states with vorticityl by calculating the magnetic Office for Scientific, Technical and Cultural Affairs,” and the
field range over which the vortex states with vorticityare ~ European ESF-Vortex Matter. Discussions with S. Yampol-
stable. We found that this stability range depends sensitivelgkii, V. Moshchalkov, and L. Chibotaru are gratefully ac-
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