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Spin-polarised currents and magnetic domain walls
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Electrical currents flowing in ferromagnetic materials are spin-polarised as a
result of the spin-dependent band structure. When the spatial direction of
the polarisation changes, in a domain structure, the electrons must somehow
accommodate the necessary change in direction of their spin angular
momentum as they pass through the wall. Reflection, scattering, or a transfer
of angular momentum onto the lattice are all possible outcomes, depending on
the circumstances. This gives rise to a variety of different physical effects, most
importantly a contribution to the electrical resistance caused by the wall, and a
motion of the wall driven by the spin-polarised current.

Historical and recent research on these topics is reviewed.
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1. Introduction

For many decades the interaction between electric currents and magnetism has
been fully described classically by the Maxwell equations. Nevertheless, when one
considers the solid state with the full understanding of many-body quantum systems,
many interesting and unusual results can be found. Particularly rapid progress has
been made in the last few years with the vast upsurge in activity in the area of
nanomagnetism and spin-dependent transport. In part this has been driven by the
tremendous improvements in the technology available for the deposition and
characterisation of ultrathin films and multilayers of magnetic materials, as well as
the capabilities to pattern these films into nanoscale devices, and in part by the
appearance of applications in the data storage industry where the scaling of bits
to few nm dimensions required a detailed understanding and control of magnetic
materials at the nanoscale.

A general review of nanomagnets was given in this journal a few years ago
by Himpsel et al. [1]. More recent reviews of nanomagnetism and patterned
nanomagnets have been given by Dennis et al. [2] and Martin et al. [3]. Much interest
in these systems concerns their electrical transport properties, and both giant
magnetoresistance (GMR) [4] and tunnelling magnetoresistance (TMR) [5] have
been reviewed by Tsymbal et al. The exploitation of these, and other, effects to
create spin-based electronic (so-called ‘‘spintronic’’) devices was reviewed by Žutić,
Fabian and Das Sarma [6].

This review is concerned with the way that the presence of domain walls interacts
with the transport properties of a ferromagnet. In Stoner ferromagnets, where the
moment is itinerant and delocalised throughout the crystal, the electrical current
is strongly coupled to the spin system. When the magnetisation vector field M is
uniform throughout the sample, then it is necessary only to separate the Fermi sea
into two parallel spin sub-systems to treat the transport properties, at least so long as
the spin-flipping is weak enough. However, when there are inhomogeneities in the
direction of M, complications are introduced, as the component of the spin operator
along the magnetic axis Sz is no longer a good quantum number throughout the
whole system. One might easily anticipate different transport properties when the
sample enters this new state, and a change in overall electrical resistance is the most
obvious. A general review of electron transport in ferromagnets was given by
Campbell and Fert [7]. The transport properties of magnetic oxides, including
domain wall effects, were reviewed by Ziese [8]. There is also a review of work on
domain wall resistance (DWR) in epitaxial nanostructures by Kent, Yu, Rüdiger and
Parkin [9]. Domain walls can also have effects on adjacent layers in proximity
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systems: various esoteric effects have been observed [10–12], or predicted [13–16], in

ferromagnet/superconductor hybrid layer stacks. Resistance is caused by the scatter-

ing of electrons into different momentum states, and so the scattering centre will also

experience a reaction force. For high enough current densities this reaction force can

be strong enough to move the scattering object, and domain wall motion caused by

the application of a current is also possible.
In this article, first the basic properties of spin-polarised currents (section 2) and

magnetic domain walls (section 3) are reviewed. The effect of a domain wall on the

conduction of spin-polarised electrons, giving rise to changes in electrical resistivity

is examined in section 4. The inverse effect, the motion or deformation of a domain

wall as a spin-polarised current is driven through it is reviewed in section 5. Finally,

some conclusions are drawn and prospects for the future given in section 6.

2. Spin-polarised current

At the birth of metal physics, Mott introduced the idea of a spin-polarised current

to explain the kink in the resistivity at the Curie temperature TC of itinerant ferro-

magnets [17]. The essential idea is that in a Stoner ferromagnet, the exchange-split
band structure means that quantities related to the transport properties such as the

Fermi velocity vF and the density of states gðEFÞ will depend on the electron spin. The

two populations of electrons, spin-" and spin-# will carry the current in parallel, as

usual, but the imbalance in their ability to do so in a ferromagnet means that the

majority of the current will be carried by one spin or other. Above TC the current

is unpolarised, whilst below TC one spin sub-band will be more conducting, causing

an overall drop in the resistivity. The key is this idea of parallel current carrying

populations, which relies on the assumption that the spin channels are completely

separate. In practice, this assumption is usually weakened to be that the spin-flip
scattering time �sf is much longer than any other relevant timescale in the problem.

The polarisation, P, of a ferromagnet is in general given by:

P ¼
n" � n#
n" þ n#

, ð1Þ

where n is some spin-resolved quantity related to the property being measured.

It measures the excess of carriers or current density of the majority spin over the

minority spin as fraction of the total number of carriers (see [18] for cautionary notes
on the use of these terms). When a current flows, P is therefore the ratio of the

spin-current Is to the charge current I, so Is ¼ Pð�B=eÞI. For a non-magnetic metal

P¼ 0, whilst for a perfectly polarised material P¼ 1. Materials with this latter

property are termed half-metals [19], and not to be confused with semimetals,

which are entirely different. Several materials have been predicted to show half-

metallic behaviour on the basis of band structure calculations [20], but perfect

polarisation has never been observed. At the time of writing, the highest measured

polarisation is some 98% observed in CrO2 [21, 22]. The fact that real measurements
have to be carried out at finite temperature, and can only measure the polarisation

at a surface or interface, means that it is still not clear whether a total polarisation of

unity can ever be attained – although Bowen et al. have recently shown that
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La0.7Sr0.3MnO3 can exhibit a fully spin-polarised pseudogap at 10K, a finite

temperature [23].
The most straightforward definition of P simply takes account of the number of

carriers at the Fermi level in the two spin sub-bands, such that

P ¼
g"ðEFÞ � g#ðEFÞ

g"ðEFÞ þ g#ðEFÞ
, ð2Þ

as might be measured in a photoemission experiment, for instance. An example of

the detection of a half-metallic system, La0.7Sr0.3MnO3, using photoemission [24], is

shown in figure 1. In transport experiments though, it is necessary to take account of

the fact that not all electrons are equally mobile under the influence of an electric

field. Ferromagnets generally have quite complex electronic structures, with several

bands crossing the Fermi level, each with a different Fermi velocity, effective mass,

etc. The way in which this will influence the transport depends upon the experimental

regime in which the experiment is carried out. The various appropriate definitions

for the polarisation in different experimental regimes have been given by Mazin [25],

and are reviewed next.

Figure 1. Spin-resolved photoemission spectra of a thin film of La0.7Sr0.3MnO3, near the
Fermi energy (EF), at temperatures far below (a) and above (b) TC. The majority (")
and minority (#) spins represent the spin directions respectively parallel and anti-parallel to
the magnetisation direction. The lower panels of (a) and (b) show the difference spectra
between the majority-spin and the minority-spin spectra. The polarisation that would be
inferred from this data would be given by equation (2). The inset in (a) shows the magnetisa-
tion (M) versus applied magnetic field (H ) hysteresis loop. After Park et al. [24].
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2.1. Tunnelling current spin polarisation

The basic definition of P in equation (2) proved problematic when attempts to
explain tunnelling data were made. Over three decades, Meservey and Tedrow
began to study the spin polarisation of electrons in ferromagnets using tunnelling
techniques. An extensive review of their work is given in [26].

Their measurement geometry, still widely used today, was to form a planar tunnel
junction from the ferromagnet under study with a superconductor. In practice, the
superconductor is always Al, or an Al-rich alloy. This is because Al is a very light
element, resulting in a minimal spin-orbit mixing of the spin channels, which can
distort the result, and it is comparatively easy to form a tunnelling barrier by oxidising
the Al surface. The resulting barrier is a thin layer of amorphous alumina, AlOx,
usually close to the composition Al2O3. The crux of the technique is to exploit the
energy gap � in the one-electron density of states that develops in the Al electrode
when it is cooled below its superconducting transition temperature. This is easily
visible in tunnelling measurements of the differential conductance Gdiff ¼ dI=dV
as a function of applied bias V, as in the Nobel prize winning experiments of
Giaever [27, 28]. The junction is cooled to well below the superconducting transition
temperature and then an applied field is used to Zeeman split the density of states in
the superconductor – the field must not be so large that the superconductor is driven
normal but must exceed a few times kT for energy resolution reasons. Fields of a few
tesla are usually sufficient for the junction at the base temperature of a 3He refrig-
erator, �300mK. This field offsets the energy gap for electrons of different spin, so
that at the gap edges perfectly spin-polarised states are generated. Electrons from the
ferromagnet can then be injected into these states by applying an appropriate bias,
and a fit to the resulting GdiffðVÞ data yields the spin polarisation of the ferromagnet.
An obvious disadvantage of this technique is that it only gives the value of P at values
well below 1K, although it gives the absolute value and the sign of the polarisation.
Examples of measurements employing this technique are given in figure 2, using
MgO barriers to probe Fe and CoFe electrodes.

A problem that was rapidly encountered was that the results of applying this
method to even the elemental ferromagnets Fe, Co, and Ni gave very surprising
results – in many cases even the sign of P was not what was anticipated. This
problem was treated theoretically by Stearns [31], who realised that the tunnelling
is dominated by the most itinerant electrons. Stearns introduced a simple model with
spin-split free-electron-like bands, and arrived at an intermediate definition of P in
terms of the Fermi wavevectors of the different spin sub-bands:

P ¼
kF" � kF#
kF" þ kF#

: ð3Þ

It is now known that in general to correctly explain tunnelling data it is necessary to
weight the density of states by the appropriate tunnelling matrix elements T [25]:

P ¼
g"ðEFÞjT

2
"j � g#ðEFÞjT

2
#j

g"ðEFÞjT
2
"j þ g#ðEFÞjT

2
#j
, ð4Þ

where we are tacitly assuming an average over all bands that are available to tunnel.
In general, the values of T are much larger for s-like bands than for d-like ones as
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s states are less tightly localised around the ionic cores, and hence will have longer
evanescent decay lengths in the insulating barrier – this is the basic justification for
making the approximation of free electron-like parabolic bands in the Stearns pic-
ture. Tunnelling primarily occurs for s electrons, which are polarised at energies in
the vicinity of the d bands in transition metal ferromagnets by hybridisation effects.
Properly taking these considerations into account leads to an explanation of the
measured positive polarisations for metals such as Co and Ni when negative ones
would be anticipated on the basis of equation (2). The importance of these matrix
elements to determining the overall tunnelling rate and tunnelling spin polarisation
was underlined in a recent careful study of alloy layers by Kaiser et al. [32] – it is even
possible to exploit this effect to have finite spin polarisation for a ferrimagnetic

Figure 2. Measurement of tunnelling spin polarisation. Conductance versus bias voltage
curves (symbols) and fits (solid lines) for superconducting tunelling spectroscopy junctions
with counter electrodes of Al96Si4 and: (a) and (b), Fe, and (c) and (d), Co70Fe30 ferromagnetic
electrodes. (a) and (c) correspond to the as-deposited junctions (no anneal), and (b) and (d) to
junctions annealed at 3808C and 4108C, respectively. On either side of the superconducting
gap are peaks in conductance corresponding to the tunnelling of electrons from the two
different spin sub-bands: the spin-# peaks are slightly shifted to more negative bias voltage
with respect to the spin-" ones by the applied field. The values for the spin-polarisation were
extracted by fitting the data curves with the following fitting parameters indicated in the figure:
superconducting gap �, depairing parameter �, and spin–orbit parameter b, as defined in a
model given in [29]. The results of 85% in panel (d) results in almost total suppression of the
spin-# peaks in the conductance, and is the highest recorded for a conventional room tem-
perature magnetic metal at the time of writing. After Parkin et al. [30].

590 C. H. Marrows



material with zero magnetisation [33]. The full energy dependence of polarisation in
CoFe and NiFe was recently determined by Valenzuela et al. using a mesoscopic
double junction device [34].

A further complication is that the matrix elements T do not depend solely on the
ferromagnetic material in question, but also on the choice of barrier material. The
Meservey-Tedrow technique can be extended to the use of barrier materials other

then alumina (as in e.g. figure 2), but much of the experimental evidence for this
assertion has been acquired from measurements of magnetic tunnelling junctions,
where both electrodes are ferromagnetic materials, recently reviewed by
Tsymbal et al. [5]. The tunnelling magnetoresistance ratio is given in the now-famous
Julliere formula [35]

�G

G
¼ �

2P1P2

1� P1P2

, ð5Þ

where the subscripts 1 and 2 refer to the two electrodes, which may not be identical.
Certain caveats apply to the application of this phenomenological formula.

Some of the most important of these caveats concerns the choice of barrier
material and the barrier thickness. Slonczewski extended the Stearns model to
take account of a rectangular barrier of height U [36], and obtained the following

expression for the polarisation by solving the Schrödinger equation and matching
the wavefunctions at the boundaries:

P ¼
kF" � kF#
kF" þ kF#

�
�2 � kF"kF#

�2 þ kF"kF#
: ð6Þ

Here � ¼ =k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m=�hh2ÞðU� EFÞ

p
is the imaginary part of the wavevector k of the

evanescent wave as it decays exponentially within the barrier.
There are several examples of the effect of the choice of barrier/electrode

combination changing the polarisation of a particular ferromagnetic electrode.
Since TMR ratios can vary somewhat from junction to junction according to sample

quality, the most compelling evidence comes from instances where it is possible to
change the sign of the polarisation. Sharma et al. observed this effect in a systematic
study using different samples with Al2O3, Ta2O5 and Al2O3/Ta2O5 barriers [37].
Another well-known example of this effect is the use of Al2O3 and SrTiO3 barriers
to invert the apparent polarisation of a Co electrode in a junction formed with a
perovskite electrode [38].

The most remarkable instance of this barrier choice effect is to be found in
epitaxial (001) junctions with bcc electrodes combined with an MgO barrier.
Fe/MgO/Fe junctions were predicted to show giant tunnelling magnetoresistance
theoretically [39, 40]. This is due to the fact that only bands with so-called �1

symmetry can propagate for any distance through the MgO barrier. In bcc Fe such
bands are only found at the Fermi level for one spin, giving an effective
half-metallic character to the material, although conventional Meservey-Tedrow
measurements with alumina barriers consistently report polarisations of roughly
40%. In the past year unprecedentedly large TMR ratios have been reported by a
few groups using MgO barriers. Yuasa et al. used pure Fe electrodes grown by MBE
techniques [41], whilst Parkin et al. used textured samples grown by magnetron
sputtering, with a TMR exceeding 220% at room temperature [30]. This use of
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CoFe electrodes by Parkin et al. was predicted to have even greater scope for large
TMR ratios than pure Fe electrodes [42]. The most recent developments at the time of
writing are a 230% room temperature magnetoresistance in an ultrasmooth junction
with a crystalline (001) MgO barrier but using amorphous CoFeB electrodes [43],
rapidly followed by a 260% room temperature result in similar junction structure,
but where the CoFeB was shown to become crystalline after annealling [44].

2.2. Ballistic current spin polarisation

A recent variation on the Meservey-Tedrow measurement is to form a point contact
junction between a ferromagnet and a superconductor. The polarisation is
then measured using a technique that has become known as point contact
Andreev reflection (PCAR). This was first performed independently by Soulen
et al. [45] and Upadhyay et al. [46]. This is an experimentally more straightforward
proposition, as no thin film fabrication is required: although the Cornell group
did make use of nanofabricated point contacts, the NRL group used bulk pieces
of material. Nevertheless, it is still a low temperature technique, since a
superconducting contact is needed. There is also no applied field needed,
meaning that the absolute value of P can be determined, but the sign cannot be.
The measurement is again to take a curve of GdiffðVÞ, which is fit with a modified
Blonder–Tinkham–Klapwijk (BTK) model [47].

The basic principle is the following: for applied biases within the gap of the
superconductor it is not possible to inject or extract single electrons, but only
Cooper pairs. For conventional BCS superconductors, the pair is a spin singlet
and so the two carriers are constrained to have opposite spins. As an electron crosses
the boundary between a normal metal and a superconductor it must form a pair and
so captures another electron of opposite spin from the normal metal. The Andreev
reflection process is the reflection of the hole so generated back into the normal metal
where it must travel back in a manner coherent with the injected electron over the
coherence length in the normal metal. This effect is therefore intimately related with
the superconducting proximity effect. In ballistic junctions, BTK were able to show
that since pairs are injected or extracted at sub-gap energies, whilst single electrons
can be injected above or extracted below the gap, the differential conductance at
sub-gap voltages is double that at high biases.

This picture is modified when the normal metal is a ferromagnet and its
electronic structure is spin-polarised. It is no longer possible for every injected
electron to find a partner of opposite spin with which to form the Cooper pair.
This reduces the sub-gap differential conductance. For the extreme case of a perfect
half-metal, it is not possible to form any pairs of opposite spin electrons at all and
the sub-gap conductance is zero. This is rather a counter-intuitive result as both the
half-metal and the supercurrent are capable of carrying current individually,
transport is only blocked at the interface between them. Measuring the ratio of
the sub-gap to the high bias conductance can therefore be related to the polarisation.
The effect on the conductance of the junction as the polarisation is varied is evident
in the data shown in figure 3. Although within this simple picture the relationship
between the two seems direct, in fact fitting of a model to the GdiffðVÞ data is
required, as the result can be affected by finite temperature, scattering from disorder
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at the interface [48, 49], spin-orbit mixing in the superconductor, proximity effects

[50], and inelastic scattering processes. Indeed parameter-free calculations of the

transmission and reflection matrices for clean and dirty interfaces show that the

BTK model fails to describe some important cases correctly [51].
It has been shown that in the ballistic regime it is necessary to weight the densities

of states with the Fermi velocity [25]:

P ¼
g"ðEFÞvF," � g#ðEFÞvF,#
g"ðEFÞvF," þ g#ðEFÞvF,#

: ð7Þ

Measurements of the polarisation of variety of NiFe alloys made by this

technique showed a weak dependence of P on the alloy composition, contrary

to expectations based on equation (2) [52]. This is however in accord with the

predictions of equation (7) with the Fermi velocity of the s and d bands in the

NiFe taken into account in the proper way.

2.3. Diffusive current spin polarisation

In the diffusive regime it is straightforward to define the polarisation of a current as

the difference over the sum of the spin-resolved current densities. From Ohm’s Law,

J ¼ �E, it is easy to see that

P ¼
J" � J#
J" þ J#

¼
�" � �#
�" þ �#

: ð8Þ

It is easy to see that since the spin-current density Js ¼ ð�B=eÞ � ðJ" � J#Þ, and the

charge current density J ¼ J" þ J#, the polarisation represents the ratio between the

two quantities. Since the dc conductivity � will depend on the band structure

characteristics / gðEFÞv
2
F� within the Drude formula, we obtain a polarisation for

Figure 3. The differential conductance for several spin-polarised metals showing the suppres-
sion of Andreev reflection and hence the sub-gap conductance, with increasing P. The vertical
lines denote the bulk BCS gap of Nb: �ðT ¼ 0Þ ¼ 1:5 meV. After Soulen et al. [45].
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the current that involves the densities of states, the square of the Fermi velocity and

the relaxation time

P ¼
g"ðEFÞv

2
F,"�" � g#ðEFÞv

2
F,#�#

g"ðEFÞv
2
F,"�" þ g#ðEFÞv

2
F,#�#

: ð9Þ

It is not immediately obvious from this expression how P can be measured in the

diffusive case, as there is no way to filter separately the spin-resolved diffusive

currents as was done for the tunnelling and ballistic cases. Nevertheless the current

polarisation affects the transport properties in many ways, as we shall see, and

a variety of different indirect measurements are possible.
There are a great many different galvanomagnetic effects in ferromagnetic metals

[7], which will affect the electric field E when a current density J flows whilst

a magnetic field is applied. The following expression for EðJ,BÞ is given by Viret
et al. (see e.g. [53] for a variant of this expression):

E ¼ �ðBÞJþ �AMR½M̂M � J�
2=jJj þ �OHE½B� J� þ �EHE½M̂M� J� þ �sdiffJ, ð10Þ

where M̂M is a unit vector in the direction of the magnetisation, and there is an implicit

temperature dependence in every term.
Taking the terms in order, we have first of all �, the ordinary resistivity, which

will be B-dependent in general. This term takes account of impurity scattering,

as well as scattering from excitations such as phonons and magnons. The field

dependence is due both to the ordinary Kohler magnetoresistance, as well as a
reduction in magnon scattering. The Kohler magnetoresistance is caused by the

Lorentz force acting on the electrons, which curls up their trajectories and reduces

the average distance between scattering events. In most cases this magnetoresistance

(MR) � B2 [54], although other forms may be found in special circumstances, such

as very thin films or very pure crystals [55]. This type of magnetoresistance can be

identified by the fact that measurements at different temperatures should obey

Kohler’s rule:

��

�ð0,T Þ
¼
�ðB,T Þ � �ð0,T Þ

�ð0,TÞ
¼ f

B

�ð0,T Þ

� �
, ð11Þ

where B ¼ �0ðHþMÞ and f is some unknown but temperature-independent scaling

function. This equation means that the magnetoresistance for different scattering
times (controlled by temperature) can be related by rescaling the field with the

zero field resistivity, since 1=�ð0,TÞ / � the scattering lifetime. This is because the

quantity B=�ð0,T Þ / !c�, where !c is the cyclotron frequency.
Another contribution of a high magnetic field in a ferromagnet is to open up

a gap in the spin-wave spectrum. This gapped spectrum supports a smaller overall

number of magnons. At higher temperatures the fractional reduction in the number

of magnons is greater, leading to a steeper @�=@B. Raquet et al. [56–58] have built on

the original work of Goodings [59] to derive a theory for the full temperature and

field dependence of magnon resistivity in a multi-band system.
The next term in equation (10) is the anisotropic magnetoresistance (AMR). The

resistivity anisotropy in ferromagnets was discovered in the 19th century by Lord

Kelvin, and is now known to arise due to spin-orbit effects [60]. The resistivity of
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a ferromagnet differs for current density perpendicular or collinear with the magnet-
isation, with the difference in most metals being �1%. According to the basic
theoretical formulations, the AMR in ferromagnetic metals can also be used as a
probe of the sign of the spin polarisation. McGuire and Potter [61] predict that a
minority spin metal is expected to have a negative AMR (i.e., resistivity with the field
perpendicular to the current is larger than with the field parallel), and vice versa.
Measurements of Fe, Ni, and Co reveal them all to have positive AMR, indicating
that they are majority spin systems. Attaching contacts to a magnet in a Hall
geometry will detect potential differences due to the planar Hall effect if the magneti-
sation is at an angle to the current flow, as the different resistivities will mean that the
potential drop from the current injection (or extraction) contact to the two voltage
probes will be different. This will be detected in the absence of a perpendicular field
(or magnetisation component).

The third and fourth terms in equation (10) are the ordinary (�OHE) and
extraordinary (�EHE), or spontaneous, Hall effects [62]. The well-known ordinary
Hall effect is simply another result of the Lorentz force on the electrons, which
deflects them to one side when they flow perpendicular to a magnetic field. As
they build up in density on one side of the conductor a transverse electric field is
set up, which is detected as a Hall voltage. The Hall voltage is proportional to B and
the Hall resistivity / ðneÞ�1. It depends only on the density and charge of the
carriers. Many metals have negatively charged carriers as expected, but a few –
e.g. Al, W – appear to have positive carriers. This was a mystery until the notion
of holes was proposed, understood in terms of the shape of the Fermi surface of
these metals. The ordinary Hall effect occurs in all metals and semiconductors.
Ferromagnets show additional Hall effects due to the spontaneous magnetisation
(B ¼ �0ðHþMÞ), which contributes to the ordinary effect, and side-jump and skew
magnetic scattering relative to the magnetisation direction, which tend preferentially
scatter electrons to one side – these lead to the extraordinary terms, which can be
relatively large.

The final term is for additional scattering due to so-called ‘‘spin diffusion terms’’.
This includes all effects related to spin accumulation, spin-dependent scattering and
spin diffusion. Giant magnetoresistance and DWR both fall into this category. It is
often this term that the experimenter wishes to determine, and it must somehow
be distinguished from all the other effects that have been listed in the previous
paragraphs. This is easy to do when the signal is relatively large, as the GMR
often is, with this final term leading to the largest field-dependent voltages by at
least an order of magnitude. Terms associated with domain walls tend to be much
smaller in common materials and geometries, and so careful experimental protocols
need to be devised to isolate them from all the others.

This term comes into play when the material is magnetically inhomogeneous in
some way. It is in this case that the related phenomena of spin accumulation and
diffusion arise. These have largely been considered in the case of a current being
driven from a ferromagnet into a non-magnetic metal, although the case of driving
spins into superconductors [63, 64], or nanoscale objects such as carbon nanotubes
[65–67] has been treated by a few groups. Of course, there is enormous activity at
present in injecting spins into semiconductors and their heterostructures [68, 69] for
spintronics applications [6].
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Once the current is injected into a non-magnetic material, the polarisation

must relax back to zero and the typical distance over which it does so is termed

the spin diffusion length, ‘sd. Aronov was the first to attempt a theoretical treat-

ment of such spin-injection processes in metals [70]. Further theoretical work was

done by van Son et al. [71], Johnson and Silsbee [72, 73] (who also performed

early spin-injection experiments [74, 75]), Valet and Fert [76], and Hershfield and

Zhao [77]. A synthesis of these various approaches was recently set out by

Rashba [78].
The basic principle is that in a ferromagnet the conductivity is (of course)

spin-polarised (the spin quantum number s ¼ 1
2 for ", and ¼ �

1
2 for #), so that the

charge current density

Js ¼ �sr�s ð12Þ

depends on the gradient of the full electrochemical potential �s for a given spin s as

�s ¼
eDs

�s
�ns þ �, ð13Þ

with �ns the deviation from the equilibrium electron number density for spin s and �
the electric potential. The spin-resolved diffusion coefficients are given in terms of the

scattering lifetime �s and mean free path ‘s by Ds ¼ ‘
2
s=�s. Of course, both �" and �#

must obey the continuity equation. Taking account of spin-flip processes through the

principle of detailed balance, g"ðEFÞ=�"# ¼ g#ðEFÞ=�#" (where 1=�ss0 is the average

flipping rate from spin s to spin s0), and making use of the Einstein relation

�s ¼ e2gsðEFÞDs, this can be expressed as

rJs ¼ se
g"ðEFÞg#ðEFÞ

g"ðEFÞ þ g#ðEFÞ

�" � �#
�sf

: ð14Þ

The s at the beginning of this expression, is the spin index which determines the sign

of the overall expression. The spin-flip relaxation time �sf ¼ �"#�#"=ð�"# þ �#"Þ has
been defined. This expression implies that the charge current is conserved, since

J" þ J# is constant, whilst the spin-current J" � J# will be position dependent. At

this point, one can define various different polarisations as required. For instance,

the current polarisation PJ ¼ ðJ" � J#Þ=ðJ" þ J#Þ will be different to the spin density

polarisation Pn ¼ ðn" � n#Þ=ðn" þ n#Þ. Although PJ is still the ratio of spin-current to

charge current, it is no longer identical to the conductivity polarisation

P� ¼ ð�" � �#Þ=ð�" þ �#Þ as it was in the homogeneous case in equation (8). The

spin accumulation now plays a role and introduces a correction leading to the

expression

PJ ¼ 2
�"�#
�" þ �#

rð�" � �#Þ

J" þ J#
þ P�: ð15Þ

The relationships between these various quantities are sketched in figure 4.
From equations (13) and (14) one can show that the splitting in chemical

potential �� ¼ �" � �# obeys the diffusion equation r2�� ¼ ��=‘sd, where the

relevant length scale is the spin diffusion length ‘sd ¼
ffiffiffiffiffiffiffiffiffi
D�sf

p
. Here the average

diffusion constant D ¼ �#D" ¼ �#D". A final useful result is that �� / Pn, and the
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term spin accumulation can be used interchangeably to describe the local spin
splitting in the chemical potentials and the local spin number density.

Scattering at the interfaces of the ferromagnets will introduce additional (almost
certainly spin-dependent) resistance and hence a discontinuity in �s at the interface.
The decay of �� away from the interface can be shown to be exponential with the
decay length given by the appropriate spin diffusion length, which will probably
differ in the materials on either side. The non-zero value for �� on the nonmagnetic
side implies a non-equilibrium magnetisation that is proportional to the current
density. This means that the polarisation of the current PJ (and of the carrier
density Pn) can be nonzero, even in nonmagnetic materials where P� ¼ 0. This is
the phenomenon of current driven electrical spin injection.

Several groups have recently demonstrated spin injection from metals [79–81],
ferromagnetic semiconductors [82–84] and tunnel and hot electron injectors [85–87]
into a semiconductor by using a so-called spin-LED as a detector. This device is

x

x

x

J

m

P

F  N

m↑
m↓
f

Pσ
Pn
PJ

J↑
J↓

Figure 4. A sketch of the spatial dependence of various quantities described in the text in the
vicinity of a F/N interface at x¼ 0 as a charge current flows. The top panel shows the electrical
� and spin-dependent electrochemical potentials �",�#, which split near the interface as spins
accumulate there. The middle panel shows the spin-resolved current densities J", J#. The lower
panel shows the various different carrier polarisations defined in the text: the conductivity
polarisation P�, the carrier density polarisation Pn, and the current density polarisation PJ.
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a semiconductor quantum well, often in AlGaAs/GaAs, in which the recombination

of carriers leads to electroluminescence (EL). There are quantum mechanical selec-

tion rules that directly relate the degree of circular polarisation of the EL light to

the spin-polarisation of the recombining carriers [88]. This technique measures the

polarisation of the carrier density Pn in the well. An exciting recent result is the

detection of spin injection into a lateral GaAs channel from Fe Schottky contacts,

with the accumulated spins detected using the Kerr effect [89]. Spin accumulation

occurred over a few tens of microns away from the edge of the Fe.
In principle, spin-diffusion and spin accumulation effects can occur at domain

walls as well as at ferromagnet/nonferromagnet interfaces. This is because the walls

form a sort of magnetic interface and the spin-polarised current injected from one

domain must relax to the equilibrium value in the other domain. Such spin

accumulation effects were invoked to explain the unexpectedly large magnetoresis-

tance observed in a Co nanowire [90]. In general one would only expect significant

spin accumulation effects to occur for walls with a thickness D that satisfies D� ‘sd.
Let us now review the properties of these magnetic domain walls.

3. Magnetic Domain Walls

3.1. Basics of domain walls

A domain wall is a topological defect in the magnetically ordered state of a solid.

Famously, the idea of magnetic domains was first postulated by Pierre Weiss [91]

(although the term ‘domain’ was not introduced until much later [92]). The idea was

essentially an abstract one required to explain certain experimental facts about

ferromagnets, principally their extremely high permeabilities – how could an applied

field of a few Oe fully saturate a piece of soft Fe when an internal field of a few kOe

was not enough to explain the value of the Curie temperature? How did the internal

(‘‘molecular’’) field, some tens of MOe, not fully saturate the material? The

development of the Weiss molecular field, really a manifestation of the exchange

interaction, was part of the answer, but the other part was to suppose that the sample

was made up of various fully magnetised regions, called domains.
Confirmation of their presence was hinted at experimentally by the work of

Barkhausen [93], but was not experimentally confirmed until the 1930s with the

work of Sixtus and Tonks [94] and Bitter [95]. The physical principle of minimising

magnetostatic energy that gives rise to the formation of domains was put forward by

Landau and Lifschitz in 1935 [96], along with the famous Landau-Lifschitz wall

profile (where 	 / tanhðx=DÞ where x is the position co-ordinate and D is the wall

thickness parameter), a refinement of the original proposal of Bloch [97]. The basic

ideas of magnetic domains were reviewed by Kittel [98], and there is a recent text

giving a thorough treatment of magnetic domains by Hubert and Schäfer [99].
This physical basis of domain formation is the competition between the various

energy terms that describe a magnetic object: exchange, anisotropy, Zeeman and

magnetostatic. The total energy is simply a sum of these terms:

E ¼ Eexch þ Eanis þ EZeeman þ Emag: ð16Þ
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As for all physical systems, the magnetic system seeks to minimise its overall free

energy. Since the magnitude of the magnetisation vector is fixed, the way to do so

is to vary its direction. The first three of these terms align the spins with each other

(Eexch), with an easy axis (Eanis) or with the externally applied magnetic field

(EZeeman). Some compromise may be found among these to determine the overall

lowest energy direction for the magnetisation. Minimising these terms alone will not

give rise to any non-uniformity in the magnetisation as this will mean that some

spins will no longer be pointing along this optimal direction.
It is the magnetostatic dipole–dipole interaction that gives rise to the formation

of domain structures. Any uniformly magnetised body will have lines of M that

terminate on its surfaces. These sources and sinks of lines of magnetisation will

give rise to a nonzero divergence at these points. Using the basic relationship

B ¼ �0ðHþMÞ we can express the divergence of M as

r �M ¼
r � B

�0

� r �H,

and since we know from the Maxwell equations that r � B ¼ 0 we are left with

r �H ¼ �r �M: ð17Þ

Hence these sources and sinks of magnetisation at the sample surfaces will give rise

to a field H that ensures the continuity of lines of B. This field is known as the

demagnetising field, as it acts to reduce B inside the material to be less than the �0M

that might naı̈vely be expected at zero applied field. A comparison with the first

of the Maxwell equations for the divergence of an electric field shows that the

divergence of M acts as the analogue of a magnetic ‘‘charge density’’. It is worth

stressing that these magnetic charges are simply a convenient mathematical fiction.
The energy associated with this stray field H is expressed in the form of two

equivalent integrals:

Em ¼
1

2
�0

ð
allspace

H2dV ¼ �
1

2
�0

ð
sample

H �MdV: ð18Þ

Notice that the first of these two expressions is always positive as it contains

H2 – evidently, as they are equal, the second must also be always positive as well.

The system will try to minimise this energy term as much as possible of course, and

so in practice this means making the stray field as small as possible, as the stray field

energy can never be less than zero. The second integral is perhaps more physically

transparent. The integrand can be seen to express the energy of a dipole MdV in the

field created by all the others. The factor of 1
2 is there to avoid double counting over

the dipoles. By forming non-uniform, flux-closed magnetic states it is possible to

reduce the number of lines of M that terminate on the sample surfaces and hence

reduce the magnetostatic energy.
The formation of domains therefore proceeds until the fall in magnetostatic

energy is balanced by the exchange and anisotropy energy costs associated with

the twists and deviations in the magnetic structure. The Zeeman energy will also

play a role if a field is applied. This field may be large enough to erase the domain

state and produce a uniform, magnetically saturated state again.
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In general, one observes large uniformly magnetised regions – the domains
themselves – separated by narrow regions where the magnetisation rotates from
the direction of one domain to the next. These are termed the domain walls. The
reason for this state of affairs, as opposed to long, continuous sweeps of magnetisa-
tion direction, is related to the different ranges of the various energy terms. The
magnetostatic energy falls off as a power law, and so is relatively long ranged when
compared with the exchange interactions (exponential falloff) and the anisotropy,
which is entirely local. It is therefore energetically favourable to confine twists away
from uniformity and local easy axes to relatively small volumes.

The magnetisation vector can rotate in two ways at a planar domain wall – the
vector can either rotate in the wall plane or through it. These two possibilities are
referred to as either a Bloch wall or a Néel wall, respectively, and are illustrated in
figure 5. The Bloch wall is the one originally proposed by Felix Bloch, and its
properties were later worked out in some detail by Landau and Lifshitz. It is the
one seen in bulk materials as even though the magnetisation vector rotates,
r �M ¼ 0 everywhere, even in the wall. This means that there is no charge associated
with the wall, so there is no stray field, and there is no cost in magnetostatic energy
associated with the presence of the wall. Of course there is a cost in exchange energy,
as the spins are no longer all parallel: there is some degree of misalignment within the
wall. The magnetisation within the domains is also likely to lie along an easy axis, so
there will be some anisotropy cost to the wall as well, as the magnetisation must
rotate through a hard direction. It is only if the magnetostatic energy associated with
the stray field is reduced sufficiently to offset these costs that a wall will be formed.

In a thin film, an experimentally important geometry, the picture is somewhat
different. The magnetisation will generally lie in the film plane for demagnetising
energy reasons, and must rotate out of it if a Bloch wall is to be formed. This
must lead to surface charges, or stray field, and the energy costs associated with
out-of-plane magnetisation are large. In a sufficiently thin film Néel walls may be
formed – although volume charges are associated with such a wall, this energy cost is
proportional to the area of the film, which is itself proportional to the film thickness.

Figure 5. Sketches of the internal structure of simple 1808 Bloch (on the left) and Néel (on the
right) walls.
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Other, more complex wall profiles in higher dimensions have been predicted in

systems with anisotropic exchange [100].

3.1.1. Domain wall thickness and energy. There are detailed calculations for the

energy cost and thickness of wall based on numerical micromagnetic models, but

it is possible to capture the physics in a fairly simple estimate. Since these quantities

are of fundamental importance in many of the results we shall examine, we shall

perform the calculation in some detail.
Suppose that we have two semi-infinite domains separated by a wall which is

N planes of spins thick – the distance between neighbouring planes is the lattice

constant a. The magnetisation will rotate by 1808 or p radians from one domain to

the next, and we assume that we have a uniaxial anisotropy – each domain occupies

one of the easy axes. Here we are imagining a structure rather similar to that shown

for the Bloch wall in figure 5.
We need to take account of the exchange. We use the Heisenberg Hamiltonian,

and define a very simple version – the exchange energy associated with a pair of

neighbouring spins S1 and S2 is just

�2JS1 � S2 ¼ �2JS
2 cos �, ð19Þ

where � is the angle between them, and J is the value of the exchange integral.

We know that the exchange is very strong on short length-scales, so we say that

the angle � between one spin and the next can only ever be small, so our formula

approximates to

JS2�2 þ const:

This is analogous to an elastic energy, with � taking the place of a strain. In physics

one can often define such a generalised elasticity, and the theory of spin-waves can be

recast in the form of deformations of an elastic medium with the exchange providing

the restoring force. We therefore define an exchange stiffness

A ¼
n

a
JS2, ð20Þ

where n is the number of atoms per unit cell. We take n¼ 1, so we have a simple

cubic lattice, just as in figure 5.
In our domain wall the magnetisation rotates over N planes of spins. There will

be 1/a2 atoms per unit area in each plane, so the number of spins per unit area of wall

will be N=a2. The angle � between neighbouring planes must be p=N. Putting all this

together the cost in exchange energy per unit area of wall will be

Eex ¼
N

a2
JS2�2 ¼

N

a2
JS2 p

N

� �2
¼

Ap2

aN
: ð21Þ

Notice that Eex � 1=N – the exchange wants to make N as large as possible so that

the rotation is as gradual as can be. The exchange energy will attempt spread the wall

out to be infinitely thick.
However, the domains occupy easy axis orientations so that within the wall

the spins are in a hard direction. This costs energy of order the anisotropy constant
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K per unit volume of wall. This leads to an energy

Ean ¼ K
N

a2

� �
a3 ¼ KNa, ð22Þ

per unit area of wall due to the anisotropy. In this expression, Ean � N the aniso-

tropy wants to compress the wall to be as thin as possible, in order to keep all the

spins it can in easy directions. We shall see that narrow walls are a prerequisite for

observing most DWR effects, and so high anisotropy materials are often sought.

(It is worth noting that although the exchange stiffnesses of most ferromagnets do

not vary by much more than about an order of magnitude, the variation in the

anisotropy constants covers several orders of magnitude and offers more choice

for the experimenter to select an appropriate material for their purposes.)
The total wall energy per unit area �wall is going to be the sum of these two terms:

�wall ¼ Eex þ Ean ¼
Ap2

aN
þ KNa: ð23Þ

The equilibrium wall will find a value for N where Ewall is a minimum,

@Ewall

@N
¼ �

Ap2

aN2
þ Ka ¼ 0:

Solving this expression for N we get

N ¼
p
a

ffiffiffiffi
A

K

r
:

The wall thickness D will be given by

D ¼ Na ¼ p

ffiffiffiffi
A

K

r
: ð24Þ

Substituting this back into the expression for the wall energy per unit area we get

�wall ¼ 2p
ffiffiffiffiffiffiffi
AK
p

: ð25Þ

This is the cost of the creation of a unit area of domain wall in terms of the exchange

and anisotropy contributions only. Whether or not the wall forms, and the type of

wall if it does, will be determined by comparing this to the possible reduction in

magnetostatic energy. As the wall energy is proportional to the area of wall, there is

something like a surface tension that will tend to make walls appear as flat sheets so

far as is possible. This property is used to great effect to pin walls in mesoscopic wire

structures, where notches or constrictions will reduce the wall area as it enters them,

giving rise to a highly controllable pinning potential.
It is interesting to note that the magnetostatic term, which gives rise to domains

and hence the walls between them, does not really have anything to do with setting

the spatial scale or energy cost of forming these walls. This is done by the exchange

and anisotropy. Exchange is a short-ranged interaction – in this calculation we have

not put in any exchange interaction beyond nearest neighbours in our lattice.

Anisotropy is completely local in this model, closely mirroring reality: this is the

case for materials exhibiting so-called single ion anisotropy, whilst only nearest
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neighbour interactions are important in those showing double ion anisotropy.

Skomski and Coey give an enlightening discussion of these two effects [101].

3.1.2. Micromagnetic calculations. These energy terms form the basis of the

various micromagnetic models that are now widely used in this research field. A

good introduction to ideas of micromagnetics can be found in the book by by

Aharoni [102]. The highly nonlocal nature of the magnetostatic energy term

means that these are numerically intensive calculations, but the advent of cheap

computing power in the last few years, coupled with freely available and rigourously

tested codes such as OOMMF [103], means that a basic capability to simulate

domain structures is now within the reach of every laboratory.
In practice, most modern micromagnetics codes work by dividing the sample

into finite elements dV, each containing a magnetic moment MdV. Some initial state

for all of these moments is defined. If one knows nothing of what the final state

might be like then it is simplest to place each moment pointing in a random

direction. One then proceeds by integrating the Landau–Lifshitz–Gilbert (LLG)

equation forward in time for each element, taking into account the interactions

between all the elements, until some convergence criterion is reached. The LLG

equation is an equation of motion for the magnetisation (a vector field M) and

has the following form:

@M

@t
¼ �
M�Heff �


�

jMj
M� ðM�HeffÞ: ð26Þ

Evidently, we can split the time (t) evolution of M into two terms which sum

together. The first is the gyroscopic reaction of the angular momentum associated

with the magnetisation with an effective field Heff. The magnetisation will tend to

precess around the field, and the coefficient 
 is the gyromagnetic ratio. This is

defined as


 ¼
�0 ge

2me

,

where g is the Landé factor and is close to 2 for many ferromagnets, in particular

the 3d series. With just the first term, we will have an infinite precession of the

magnetisation, since no losses are included.
The second term is the one that dissipates energy, and the dimensionless � is

called the damping coefficient. Physical materials have � in the range 0.004 to 0.15.

This term is introduced phenomenologically simply in order to get the system to

settle down into an equilibrium state instead of precessing endlessly. The real mean-

ing of the � parameter and more intelligent ways of incorporating the damping into

the model are active research topics. These two torque terms are shown in figure 6.
The simplest scheme, numerically, is to split the sample into many small cuboids

(voxels), which need to be small enough to accurately represent the smallest magnetic

object in the sample – typically a domain wall – since we are carrying out numerical

discretisation of a continuum model. In particular, a common approximation for the

exchange interaction (the one which is shown below in equation 27a) is only valid for

small differences in angle between neighbouring moments. A rough criterion to see if

any calculated domain structure is valid is to see what is the largest angle between
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neighbouring moments. Anything smaller than �108 is usually taken to be reliable.
Anything higher than �308 is almost certainly not.

The field driving the motion of the moments is described as an effective one since
the applied field is only one of the terms that contributes to it. In fact we can describe
applied field, demagnetising field, anisotropy, exchange and anything else we care to
introduce into the problem into this effective field. There are two steps to this
process: first of all we need to write down the free energy density E of our system.
This will be defined as a scalar field, and the various energy densities are written
down like this:

Eexch ¼
A

M2
s

jrMxj
2
þ jrMyj

2
þ jrMzj

2
� �

ð27aÞ

Eanis ¼
K1

M4
s

M2
xM

2
y þM2

yM
2
z þM2

zM
2
x

� �
ð27bÞ

Edemag ¼
�0

8p
MðrÞ �

ð
V

r �Mðr
0
Þ
r� r

0

jr� r0j3
d3r0 �

ð
S

n̂n �Mðr
0
Þ
r� r

0

jr� r0j3
d2r0

� �
ð27cÞ

EZeeman ¼ ��0M �H ð27dÞ

It’s worth taking a moment to see what these expressions mean physically.

. The first term Eexch is fairly straightforward. A is the exchange stiffness, as
defined in section 3.11, and any change in the direction of M will result in
some of the gradients in the bracket being nonzero and so will cost energy.

. The second term Eanis will take different forms depending on the type of
anisotropy we use. The example given is for a system with cubic symmetry.

. The magnetostatic energy density Edemag is just sum of dipole–dipole
interactions with a factor of 1

2 to avoid double counting.

m

Heff

Precessional
torque

Damping
torque

Figure 6. The different torques experienced by a precessing moment m in an effective field
Heff, related to the two terms in the Landau–Lifschitz–Gilbert equation (equation 26). The
first term, / �m�Heff, induces the precession of the moment m around the effective fieldHeff.
The second term, / �m� ðm�HeffÞ, gives rise the damping torque that causes the moment to
eventually settle pointing along the effective field direction.
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. Finally the Zeeman energy density EZeeman contains the interaction with the
applied field and has a very simple form. Notice that we have not assumed
a uniform applied field here, but this is often done.

In the finite element (or more commonly finite difference) schemes implemented

numerically, the derivatives and integrals become differences and sums.
The effective field is then defined by

Heff ¼ �
1

�0

@E

@M
: ð28Þ

It is something akin to a force, in that it is a gradient of a scalar energy field –

however the thing that is subjected to the force is not a particle but a vector field,

the magnetisation. It is a ‘‘field’’ in the sense that it acts to exert a torque on the

magnetisation, and with the appropriate coefficient (the reciprocal of �0 as in the

above expression) we can arrange for it to have same dimensions as a field as well.
In order to calculate a static domain state one can begin from an appropriate

starting state, for instance uniform magnetisation, a vortex, or total randomness,

and iterate until the torque jM�Heffj is smaller than some tolerance. An example of

the use of this approach is shown in figure 7, where a random initial magnetic state

is rapidly converged to a typical closure domain structure. It is usual to make the

damping parameter � artificially large to get the system to settle down quickly and

make efficient use of computer time.
On the other hand, an important advantage of this technique is that it can

naturally handle magnetisation dynamics and the response of the system to time-

varying fields, as it is based on the correct equation of motion. In this case accurate

knowledge of � is necessary to reproduce the correct behaviour. The most important

shortcoming is that it is not simple to incorporate the effects of finite temperature

and thermal activation, which can be treated with molecular dynamics-type schemes

(see [104] for an example of this approach used to study vortex matter). There

have been attempts to do this phenomenologically by introducing an additional

stochastic term into the effective field, with statistical properties that depend on

the temperature [105].

3.1.3. Tailoring domain structures for measurements. In order to study DWR it is

necessary to have a well-defined, well-known, and ideally quite simple, domain state.

This can be achieved in one of two ways: either by tuning material properties or

by patterning a magnetic film into some micro- or nanostructure that controls the

domains using shape-related magnetostatic effects. We discuss this latter possibility

in the following subsection.
An important geometry used in many experiments on domain walls is that of

a thin film with a perpendicular anisotropy large enough to lift the magnetisation

vector out of the film plane. This can be arranged in one of two ways. The first is to

choose a material with a strong enough magnetocrystalline anisotropy and preparing

a suitable crystal or epitaxial thin film. The other is to take advantage of the strong

anisotropies present at interfaces between different magnetic metals and prepare

multilayers with a high density of such interfaces: an example is shown in figure 8.

Much early work in the field of magnetic multilayers concerned the study of such
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anisotropies [106, 107]. An example remanent domain structure for an out-of-plane

magnetised multilayer sample is shown in figure 8.
Such systems do not readily remain in a single domain state at remanence, as this

is a highly demagnetising configuration for the magnetisation to take up: both
surfaces of the film will be covered with the highest possible density of magnetic

charge available for a given value of M. (In the language of demagnetising factors,

the factor for this magnetic configuration is unity.) Hence dense domain patterns

are formed, typically a stripe or labyrinth domain structure, with equal numbers of

narrow domains magnetised along the two easy directions perpendicular to the film

plane. The magnetisation subdivides until the density of walls means that the asso-

ciated energy cost of creating new walls exceeds the drop in magnetostatic energy. It
is possible to construct analytical expressions for the various energy terms, in partic-

ular the magnetostatic term, if simple geometries are assumed [108], which can be

Figure 7. Results of a simple micromagnetic calculation performed using the OOMMF code
[108]. The simulation is of a 2�0:5mm permalloy bar patterned from a film that is 20 nm thick,
using a 20 nm cell size. Standard OOMMF materials parameters for permalloy were used. In
each panel the colour scale represents the magnetisation direction: blue pixels are magnetised
to the left, whilst red pixels are magnetised to the right. The top panel shows the initial random
magnetisation configuration. In the centre we show the formation of the nascent domain
structure after 1 ns of simulation time, whilst at the bottom the converged magnetic state is
shown, with a simple closure domain structure found at each end – after 19.8 ns of simulation
time.
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solved to give the domain structure in the sample as a function of applied field. These

lead to prescriptions for determining the relevant anisotropy constants in such mate-

rials from macroscopic measurements of hysteresis loops which can be be used to

infer the domain structure [109]. The Kooy and Enz model of [108] was generalised

by Draaisma and de Jongh to the case of multilayers such as Co/Pt or Co/Pd that

have out-of-plane anisotropy [110].
It is the high density of walls in the stripe domain state that makes it so useful

for (DWR) studies. The walls are separated by the stripe domains which have

a characteristic size that was derived by Kaplan and Gehring as [111]

d ¼ t� exp
pd0
2t

� �
exp 1�

0:66p
2

� �� 	
, ð29Þ

where the dipolar length d0 ¼ 2p
ffiffiffiffiffiffiffi
AK
p

=�0M
2 and t is the film thickness. The

temperature dependence of this domain structure was discussed in [112].
An important parameter for stripe domains is the so-called quality factor,

Q ¼ 2K=�0M
2, defined as the ratio of anisotropy to demagnetising energy densities.

For Q < 1 the demagnetising energy is the dominant term and for very thin films the

magnetisation will lie in the plane. For thicker films the interior will form perpen-

dicularly magnetised domains but the surfaces will be magnetised in the plane, as the

anisotropy is too weak to overcome the large demagnetising fields there. At the top

Figure 8. A magnetic force micrograph of the remanent domain structure in a {Co (5 Å)/Pd
(10 Å)g � 19 multilayer with a strong out-of-plane anisotropy grown by sputter deposition.
The labyrinth domain structure with a well-defined period of about 200 nm is evident from
the image.
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and bottom of the walls the magnetisation will curl over to lie parallel to the surface
in structures that are known as Néel flux-closure caps. This complex multidirectional
wall structure can prove problematic for the interpretation of transport data, where
simple wall models are usually assumed. For Q > 1 the anisotropy energy will be the
dominant term and a sharply defined domain state results, with domain walls extend-
ing right up the surfaces of the film with negligible Néel caps, as shown in figure 9.

The wall will have the strongest effects upon the resistance when the change in
direction of magnetisation is abrupt on the length-scales associated with transport,
such as the mean free path ‘. Since the wall thickness D �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA=KÞ

p
, it is obvious

that high anisotropy materials best satisfy this desideratum. Very high resolution
techniques are needed to observe such narrow walls. Aitchison et al. used Lorentz
mode transmission electron microscopy to observe the maze-like structure in
high anisotropy FePd (001) films, and a wall thickness below the resolution of the
microscope, �20 nm [114].

To observe thinner walls, the only available technique is spin-polarised scanning
tunnelling microscopy. This was used by Ding et al. to observe ultranarrow walls at
the surface of a Co (0001) film [115]. In this version of the technique an ultrasoft
magnetic tip has its moment modulated by a tiny coil, and the TMR between sample
and tip is measured using phase-sensitive detection to give the magnetic signal. A
related version of the method has been refined to a high art by the group of Bode and
Wiesendanger, who use it in a spectroscopic mode where there is magnetic sensitivity
at a particular energy in the band structure of the tip, accessed by selecting the
appropriate bias voltage. Typically W tips coated with Fe, Gd or Cr are used.
Atomically abrupt domain walls were observed in Fe nanowires grown by epitaxial
step-edge decoration of a vicinal W substrate [116]. Subsequent experiments showed
that the wall orientation follows the lattice not the wires themselves [117], showing
the importance of the intrinsic anisotropy of the Fe in this system. The use of
spectroscopy in this method means that underlying band structure of wall in the
Fe nanowires can be probed, and subtle differences in the electronic structure within
the wall were found experimentally [118], which can be compared with the electronic
theory of domain walls [119]. Meanwhile, extremely high spatial resolution of wall
position was achieved by Novoselov et al. who detected the motion of a domain wall
in the Peierls potential of a garnet crystal [120].

Figure 9. A micromagnetic simulation of stripe domain structure through the thickness of
an FePd film. The domain width is �60 nm with weak Néel caps of similar size at the extrema
of the Bloch walls. After Viret et al. [113].
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3.2. Domain walls in nanostructures

The patterning of magnetic microstructures is a large and growing field. There are

many different techniques that can be used and a wide-ranging review of magnetic

nanostructures has been given by Martin et al. [3]. For studying the interactions of

electronic transport with domain structures the natural geometry to use is a wire, and

we will see numerous examples of this in sections 4 and 5. Most commonly, these

devices are patterned using electron beam lithography, although the use of focussed

ion beams is becoming more popular. In general measurements are made with

current contacts at either end of the wire (which is not necessarily straight) and

measurements are made using various voltage probes, either in a longitudinal or

Hall geometry, to detect either electrical resistance or magnetisation reversal by wall

motion. A typical device of this sort is shown in figure 10. Wall motion may also be

detected by the usual imaging techniques of Kerr, magnetic force, or Lorentz

microscopy.
At this point it is enough to mention some of the basic ways in which domain

walls can be controlled and positioned in such structures. There are two aspects to

this: the controlled nucleation of a wall at a specific point in the nanostructure, and

then positioning the wall relative to the voltage probes that are used to make the

electrical measurements.
Wall nucleation generally happens at the ends of the nanostructured wire, and is

strongly affected by the details of the shape there [121]. Certain shapes, in particular

the commonplace square wire end, are difficult to saturate magnetically and so a

vortex or partial wall structure may be there even at high fields. This will rapidly

expand when the field is removed to give an uncontrolled reversal. There have been

various studies of the effects of the shape and size of nanoscale magnetic elements

on switching properties [122–127]. A commonly used geometry was introduced by

Shigeto et al. [128], who positioned a large pad at the end of the narrow wire of

interest. The larger scale of this so-called nucleation pad means that it has a much

smaller coercivity than the wire itself, and a wall is reproducibly nucleated at the point

where the pad joins onto the wire [129]. This built on the concept of Chen et al. [130],

Figure 10. Micrograph of a generic device used to inject domain walls from a pad into a wire,
with various current, Hall and resistance contact probes. The device was formed by an e-beam
lithography lift-off process, whilst the Au contacts were patterned using conventional optical
lithography. The width of the wire part of the structure is 2.5 mm.
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who studied the propagation of walls down sub-micron wires from so-called

‘‘reservoirs’’ that were a few hundred mm in size. The walls were detected at the

other end using conventional magneto-optic Kerr microscopy to study collector

pads a few mm in size. An alternative nucleation strategy is to use an overlying cur-

rent-carrying wire to generate the localised magnetisation reversal [131]. Corners in

wires can also be used to reproducibly create head-to-head or tail-to-tail walls by

applying a field that bisects the two arms of the structure on either side of the corner.
Propagation of a single wall in sub-micron wire was monitored in real time with

ms resolution using the GMR effect by Ono et al. [132]. In this case a thick featureless

permalloy wire was found to reverse completely in around 0.5 s for a 5 nm thick layer

and only 10 ms for a 40 nm thick film. Some feature needs to be inserted into the wire

in order to locate and pin the wall. Commonly this is a constriction or notch. Since

the wall surface energy is reduced when the wall enters the notch it forms an effective

energy well in which the wall can reside. Such a structure is useful in creating low

coercivity memory cells that permanently contain a domain wall [133].
Wunderlich et al. detected free propagation of a domain wall in a wire patterned

from a perpendicularly magnetised Pt/Co/Pt sandwich, but observed variations in

wall shape and velocity as it traversed a Hall cross [134–136]. The EHE was used to

clearly measure the entry and exit of a wall in the cross, which contained only

4� 10�3 mm3 of Co – only a few million atoms. Direct atomic force microscope

(AFM) lithography has been used to create point and line defects in Pt/Co/Pt

out-of-plane magnetised thin film systems [137, 138]. Focussed ion beam (FIB)

lithography has been shown to create reproducible pinning centres in permalloy

wires [146] and GaMnAs systems [140]. (At very low temperatures domain wall

motion and depinning will be controlled by quantum tunelling effects [141, 142].)

Asymmetric notches give rise to direction dependent depinning fields [143], whilst

Allwood et al. also have fabricated a magnetic domain wall ‘‘diode’’ using different

sized wires connected to a triangular object [144]. Multiple magnetic configurations

are possible in such notch structures [145]. Alternative schemes for controlling wall

propagation include the use of corners and rotating fields [146] and wire junctions

[147]. The engineering and control of domain wall motion in nanostructures is now

sufficiently refined that rather complex circuits capable of performing the full suite

of logic operations, with magnetisation directions representing the Boolean zeroes

and ones, can be reliably fabricated [148].

3.3. Domain wall dynamics

Since domain wall motion is a very common mechanism of magnetisation reversal,

it is useful to have an understanding of the dynamic, as well as static, properties of

domain walls. A rigourous but unpublished exact analytical treatment of a moving

1808 wall in a uniaxial material was found by Walker (a description of these results

can be found in [149]). The LLG equation (equation 26) can be re-expressed in polar

co-ordinates 	,� with the polar axis along the easy axis. We now have a wall that

gives a transition of 	 from �p=2 to p=2, with the wall angle � giving the wall

character, � ¼ 0 for a static Bloch wall (and � ¼ 908 for a static Néel wall).

Inserting the appropriate version of the energy density, with the field applied
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at 	¼ 0, and assuming a constant velocity v to convert the time derivatives into

spatial derivatives using d=dx ¼ �v�1d=dt, one obtains the results

v ¼ �
M sin� cos �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=Keff

p
ð30aÞ

�0H ¼ ��0 M sin� cos� ð30bÞ

where Keff ¼ Kþ 1
2�0M

2. During motion the torques within the wall mean that

it acquires some Néel character, giving a nonzero value of �. This wall structure

is sketched in figure 11. Equation (30a) relates the wall velocity to this angle, whilst

equation (30b) gives the applied field needed to obtain this angle. With these

solutions the driving and dissipative terms balance exactly, giving the constant

velocity motion that was assumed. A comparison of the two expressions shows

that v / H, up to the point where � ¼ p=2, which gives the maximum wall velocity

vmax ¼ 


ffiffiffiffiffiffiffiffiffiffi
2AQ

�0

s ffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

Q

s
� 1

 !
, ð31Þ

Figure 11. The distortion undergone by a Bloch wall during motion. An applied field along
the x-axis will cause the wall to travel along the z-axis. (After Chikazumi and Soshin [154] by
permission of Oxford University Press.)
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at an applied field of

Hmax ¼ �
2�0K

M

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

Q

s
� 1

 ! ffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

Q

4

s
: ð32Þ

This maximum velocity can be exceeded with the application of a transverse field, or

in the presence of certain anisotropies [150]. For fields exceeding Hmax no steady

state solution is possible. Oscillatory solutions can be found [151] where the wall

moves back and forth as it switches between Bloch and Néel states. There are also

chaotic solutions where the wall moves inhomogeneously [152]. Numerical results

for various oscillatory cases, including transient and non-periodic responses, were

reported by Schryer and Walker [153].
It was first pointed out by Döring that a domain wall will exhibit inertia even

though there is no mass displacement of any sort [155]. This so-called ‘‘Döring mass’’

arises as a direct result of the fact that the spins forming the wall have an associated

angular momentum. The canonical situation used to derive the wall mass is to

consider a Bloch wall normal to the z-direction with spins confined in the x–y

plane. A field applied along the x-axis will exert a pressure on the wall and cause

spins to rotate – the key point is that the spins must precess and so depart from

the x-y plane, giving the wall the Néel character described above, and an associated

demagnetising field Hz ¼ �Mz along the wall normal. There is, of course,

demagnetising energy associated with this field. The spins will then precess with

frequency d�=dt ¼ �vHz ¼ �vMz in the x–y plane around this wall normal causing

a displacement of the wall along z at a velocity v. Evaluating the energy of the

moving wall, �w ¼ �
1
2�0

Ð1
�1

M �Hdz, we find an additional demagnetising energy

due to the motion induced z components of M and H. Since both Mz and Hz are

proportional to the wall velocity, this additional energy is proportional to v2. The

constant of proportionality must therefore have dimensions of mass, and we can call

this additional energy a ‘‘kinetic energy’’, 1
2mwallv

2, with the mass defined as:

mwall ¼
�0�static
2v2A

: ð33Þ

This is the Döring mass of the wall. Although the idea of associating a mass with

an object that is not ‘‘matter’’ in the conventional sense seems counter-intuitive, it

has been experimentally shown that walls do move as if possessing some inertia [156].

A more careful analysis leads to a velocity-dependent mass parameter [102], equation

(33) actually only gives the zero velocity limit of the wall mass.
In the discussion above all dissipation is ‘‘intrinsic’’ in the sense that it is due to

the Gilbert damping, and we have tacitly assumed a perfectly homogeneous, insulat-

ing material. In bulk metallic samples it is usual for this to be exceeded by eddy

current effects, and micromagnetic calculations taking these into account have been

made [157, 158], but these are usually unimportant in thin film or nanostructured

samples. Much more important in these cases are the effects of magnetic friction

at defects, particularly edge roughness in patterned structures, which can affect the

coercivity of these structures substantially [159]. The recent activity in magnetic

nanostructures has seen accompanying activity studying dynamics in these systems.

Atkinson et al. achieved very high wall velocities in sub-micron permalloy wires [160],
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and micromagnetic calculations by Nakatani, Thiaville and Miltat confirm the role
of edge roughness in achieving this [161]. The propagation velocity measurement of
a magnetic domain wall in a sub-micron magnetic wire was recently measured by
Himeno et al. [162]. There have also been recent measurements of domain wall
motion in the undriven creep regime [163].

4. Domain Wall Resistance

The main purpose of this section is to review recent results in the study of DWR.
However, we begin with a brief historical perspective in order to give some context to
the more recent work. Somewhat arbitrarily, the modern era is defined as starting at
some point in the 1990s, as it was at this time that the improvements in thin film
growth, nanofabrication and advanced characterisation that made the development
of GMR devices possible were applied to the problem of DWR.

4.1. Early results

The subject of the variation of electrical resistance in a ferromagnet with domain
structure was first studied as early as the 1930s, with Gerlach reporting that
Barkhausen jumps in that magnetisation do not influence the electrical resistance
in 1932 [164]. The efforts of Steinberg and Miroschnischenko in 1933 to detect
changes in resistance associated with Barkhausen discontinuities – now known to
be domain wall motion – also failed to detect any effect [165]. In the following year
such effects were detected by Heaps in a strained Ni wire [166]. The improvement
came about as a result of better experimental resolution of the very tiny resistivity
changes involved, the fractional change in resistance being �6� 10�5. The resistance
jump of the sample was interpreted in terms of the AMR within the domains, rather
than arising from the walls themselves. These experiments were carried out when the
study of domains was very much in its infancy, with the the first experimental
observations of these structures being more or less contemporaneous [94, 95].

There was a burst of interest in the topic of the magnetoresistance of pure
ferromagnetic metals as the 1960s became the 1970s [59, 167, 168]. One of the
most important series of papers of this era reported experimental studies of the
magnetoresistance of Fe whiskers by Taylor, Isin, Coleman, Shumate and Fivaz
[169–171]. Such samples are very high quality single crystals and hence have very
long mean free paths and well-defined magnetic anisotropy axes. This type of crystal
can be grown by the hydrogen reduction of FeCl2 at 7008C, and they tend to grow
along low index directions such as h100i and h111i [172]. In particular in [170], the
changes in resistance on going to a multi-domain state were enormous at helium
temperatures, with the resistivity rising by well over an order of magnitude in several
cases, shown in figure 12. The hysteresis observed made it clear that the changes were
associated with magnetic domains, but an interesting feature was the fact that in this
regime the resistance of the sample was highly non-Ohmic. The large changes were
only observed for large currents, of the order of a few Amperes flowing through
a whisker of diameter a few hundred mm. The Oersted field generated by these
currents is strong enough to generate a vortex-like domain structure along the length
of the whisker at moderately low fields. Key to understanding these structures is to
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note the very high degree of crystallographic perfection in the whiskers (residual

resistance ratios of a few thousand are observed on cooling to helium temperatures),

which corresponds to mean free paths �10 mm. This means that the value !c� � 1 for

fields of the order of �0 M � 2:2 T in the whiskers. Since the magnetoresistance for
M ? J is well-known to be much higher than for M jj J, the current-driven transition

from a longitudinal flux-closed state to a transverse vortex state causes the enormous

increase in resistance. Although the large changes in resistance are coupled to the

domain structure, it is the ordinary Kohler magnetoresistance that is the underlying

mechanism. This effect was further elucidated in [171] where applied stress was used
to manipulate the domain structure through the inverse magnetostriction effect.

A few years later, some reports on experiments on thin films were published.

Anticipating many of the so-called ‘‘modern’’ experiments these studies used thin

films with a perpendicular anisotropy, and hence a dense stripe domain structure.

Okamoto et al. studied GdCo alloy films [173], measuring both the extraordinary

Hall effect and the magnetoresistance. They concluded that the magnetoresistance of
this system was closely related to the domain structure, although no attempt to

separate different possible mechanisms was made at this stage.
Two years later both this and another group published data on MnBi films

[174, 175]. Thin films of this material show a very large EHE and a strong out-of-

plane anisotropy, although this rapidly becomes weak upon cooling the sample

below room temperature [174]. In this experiment a magnetoresistance associated
with the generation of walls roughly ten times larger than that observed in Gd-Co.

Masuda et al. [175] used a much thicker film of MnBi (300 nm rather than 100 nm),

Figure 12. The magnetoresitance of an h100i oriented Fe whisker sample measured at 4.2K.
The fractional increase in resistance upon entering a multi-domain state is more than an order
of magnitude. After Taylor et al. [170].
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and it is clear from the EHE hysteresis loop they present that the sample took up
a stripe domain state at remanence. This group presented a model that could
reproduce their results using a modified form of the Kooy and Enz [108] model to
calculate the details of the stripe domain pattern as it varied with field. The basis of
the model for the magnetoresistance is the combination of the resitivity anisotropies
associated with the hexagonal crystal structure and the ferromagnetism [176]. All the
stripe domains will be magnetised along the crystallographic c-axis, but within the
wall the local magnetisation direction must rotate away from this axis. Using these
assumptions the main features of the form of the experimental magnetoresistance
loop were recovered by the model – the resistivity within the 11 nm thick walls
was found to be �100 m� cm higher than in the domains, where the resistivity was
�7000 m� cm.

None of these experiments detected the actual DWR itself, only other resistance
effects that depend upon the domain state of the sample: generally the first two
terms on the right-hand side of equation (10), the ordinary and anisotropic
magnetoresistances, which are modified by the changes in the domain structure.

4.2. Theory

In this section various theoretical models describing the electrical resistance of a
domain wall will be described, in something approximating chronological order.
For a long while there was very little theoretical work on the resistance of the
domain walls as, in general, the signals were so small and experimentally difficult
to deconvolute from all the other galavanomagnetic effects present in ferromagnets
(equation 10): there was too little information to be able to quantitatively test any
model. It was not until the 1970s that serious efforts to calculate the direct resistance
associated with a domain wall were made.

One of the earliest to be published was the theory of Cabrera and Falicov
[177, 178]. The first of these papers dealt with the so-called ‘paramagnetic effect’
of scattering due to an interaction with the electron spin, an effect suitable for
inclusion in the �sdiff term of equation (10). The second deals with the ‘diamagnetic
effect’ of Lorentz force deflection of the electron orbits, which is part of the ordinary
�ðBÞ in that equation. The first is the one which will interest us most here.
Remarkably, it seems that no-one attempted a calculation of DWR until these
authors did so in 1974, although the idea of a spin-polarised current had existed
for roughly 40 years at that time.

The basic thrust of the paramagnetic, spin-scattering model was the following.
Electrons travelling in one domain will experience a different potential upon entering
an oppositely magnetised domain since the band minimum will differ by the
exchange energy splitting. The basis of their model was to calculate the reflection
coefficients of the electronic wavefunctions at the potential steps that domain walls
will represent within this picture, as sketched in figure 13. Spherical free electron-like
Fermi surfaces were used, with rigidly shifted parabolic bands. Two cases were
considered: weak (2�BB0 � EF) and strong (2�BB0 � EF) exchange splitting of
the bands, defined by comparing the exchange energy 2�BB0 with the Fermi energy:
B0 is the molecular field, not a real magnetic field. In the case of weak splitting, the
magnetoresistance of the wall ��=� � expð�pkFD�FÞ, where D is the wall thickness
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and �F ¼ �BB0=EF. By definition, for weak splitting �F < 1, but for all commonplace
systems the Fermi wavelength 2p=kF is orders of magnitude smaller than D. This

implies a wall resistance that is vanishingly small, because of the exponential depen-
dence. For the example of iron, 2p=kF is only 1 or 2 Å, depending on which band

is in question, whilst the wall thickness is some thousands of Å. This leads to a
��=� � 10�4. The physical reason for this is that waves are only scattered very much

by potential steps that are abrupt on the scale of the wavelength of that wave, as
sketched in figure 13.

For strong splitting (�F � 1), it was found to be necessary to restrict the

calculation to a very narrow wall, viz. assume kFD� 1. In practice this means
atomic abruptness. In this case a variable v ¼ kF"=kF# ¼ ðgðEF"Þ=gðEF#ÞÞ

1=3, trivially

connected to the definitions of P in equations (2) and (3), determines the DW
resistance. The obvious relationship with the Stearns definition of polarisation,

equation (3), emphasises that the theory is essentially one of tunnelling between
one domain and the next. The DW resistance vanishes as v! 1, as might be

expected. As v!1 (equivalent to P! unity), the material becomes half-metallic
and the wall resistance also !1. A multi-domain half-metal, with no opportunity

for spin relaxation, is an insulator, no matter how high � is.
Cabrera and Falicov satisfied themselves that, once the diamagnetic Lorentz

force effects that give rise to additional resistance at the wall were properly treated

[178], their theory could account for the results found in the Fe whiskers. However,
it does not describe most cases encountered experimentally because the condition

Adiabatic

Abrupt

y↑

y↑

y↓

y↓

V↓

V↓

V↑

V↑

Figure 13. Spin-resolved potential profiles V",# and resulting wavefunctions  ",# at abrupt
and wide (adiabatic) domain walls. The wavefunctions are travelling from left to right. In the
adiabatic case, the wavelengths of the two wavefunctions are exchanged, but the change in
potential energy is slow enough that there is no change in the amplitude of the transmitted
wave. When the wall is abrupt the wavelength change is accompanied by substantial reflection,
resulting in a much lower transmitted amplitude (the reflected part of the wavefunction is not
shown). This gives rise to domain wall resistance.
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of D9 kF, necessary to generate a measurably large signal, is never met. It probably
was not in the whiskers, but the very high degree of crystallographic perfection
means that the diamagnetic amplification can take place. Even the best epitaxially
grown thin films are far more disordered than this, and so one has to rely on the wall
thinness alone. However, during the recent bout of activity in measuring ballistic
nanocontact structures (discussed in section 4.4), the idea of an atomically abrupt
wall has often been used to explain the large effects that are observed.

Cabrera and Falicov commented in their concluding remarks of [177] that the
rotating component of the magnetization within the wall ‘‘opens up a channel for
adiabatic spin change’’. Luc Berger treated exactly this issue in a theory that drew an
analogy with the propagation of microwaves in a twisted rectangular waveguide
[179]. The polarisation of the microwaves is easily rotated by the waveguide so
long as the twist happens over a distance appreciably greater than the wavelength.
The principle is that slow enough changes in a polarisation state (be it microwaves,
spins etc.) can take place adiabatically, so that the polarisation changes to a new
direction without loss of energy and without disruption of the propagation of the
wave.

In this paper [179] Berger treated the eddy current loops that run around each
wall caused by the Hall effect. The fields generated by the eddy currents apply a force
to the walls that will tend to drag the whole domain structure in the direction of the
current drift velocity. Moreover, energy will be dissipated by these eddy currents
by the usual Joule heating mechanism. This dissipation will manifest itself as
additional Ohmic resistance that will not appear when the domain structure is
removed, giving another mechanism that can give rise to small magnetoresistances,
with ��=� � Cj�j2. In this formula � is the tangent of the Hall angle and C is a
coefficient taking into account the geometry of the domain structure. For a stripe
domain structure with the current flowing perpendicularly through the walls, C¼ 1.
Berger applied this model to the experimental results on Gd-Co and MnBi of
Okamoto et al. [173, 174] and Masuda et al. [175]. He argued that the Masuda
model, where the resistivity anisotropy was used to make the wall a higher resistivity
phase, cannot be made to work except by assuming an unrealistically small domain
size, and proposed that this alternative mechanism can adequately describe the
results.

Berger also discussed the possible torques exerted on the moments within the
wall, which are proportional to the polarisation of the current. We shall discuss
such effects more extensively in section 5. It is also interesting to note that this
paper [179] represents the first suggestion that the interaction of a current with a
magnetic domain wall can be used to measure the degree of spin-polarisation of that
current.

More recently, Berger gave a new calculation where he showed that AMR
and planar Hall effects modify the electric field and current density distributions
when domain walls are present in thin films – the example of permalloy was used
in a model calculation [180]. These give rise to detectable voltages. In order to detect
these effects the probes must be placed very close to the domain walls, since much
larger voltages are generated within the domains themselves. Berger estimated
the Néel wall thickness in such a film to be 55 nm, this implies probe positioning
to better than at worst 10 nm. This might be possible now with scanning probe
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methods – needle probe methods such as those used to measure the Hall fields with a

stripe domain sample [181] do not have the necessary resolution.
In recent years, the idea of an intrinsic wall resistance arising from the

spin-polarisation of the current has been returned to. Even small departures from

adiabaticity ought to give rise to effects which can be sought experimentally. Two

models were given by different groups predicting the magnitude of this effect: one

semi-classical, and the other more fully quantum mechanical.
The pseudo-Larmor precession of the electron spin around the rotating exchange

field in a wall was at the heart of a semi-classical model of DWR given by Viret et al.

[182], and was used to explain small deviations from a pure AMR behaviour in the

magnetoresistance of Ni and Co thin films (figure 14). As the spin enters the wall the

local exchange field will begin to cant away from the spin direction. Suppose, for the

sake of argument that the majority spins are the highly conducting population,

majority spin carriers will have a degree of minority character in the new rotated

exchange field, and will begin to undergo more rapid scattering. Minority spins will

begin to undergo slightly less rapid scattering, but upon adding the channels in parallel

the overall resistance will be slightly higher. Treating the spin vector classically, the

scattering rate varies linearly with the cosine of the angle between the carrier spin and

the local magnetisation, cos 	s. The mean free path was then written by Viret et al. as

‘ð	sÞ ¼
‘

1þ P2 þ 2P cos 	s
, ð34Þ

where ‘ is the angle-averaged mean free path and P is the polarisation of the current.
The additional resistance given by the wall can be derived from this expression

by considering the angle of the spins as they pass through the wall.

Figure 14. Numerical simulation of the canting of the conduction electron spin as it attempts
to follow the local magnetisation during transversal of the domain wall in the laboratory
frame of reference. After Viret et al. [182].
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As the spins deviate away from the local exchange fileld an extra resistance, given by

�R

R
¼

2P

ð1� PÞ2
ð1� hcos 	siÞ, ð35Þ

will be measured per domain wall. The part of this formula that relates to the

polarisation P bears a very close similarity to the Julliere formula, equation (5).

An important feature of this formula is that the additional scattering caused by

the wall happens at a rate proprotional to the scattering in the uniformly magnetised

material, so that the magnetoresistance ratio is directly related to the polarisation

of the current.
Viret et al. estimated the angle needed in this formula by considering the way that

a spin will precess in a canted field. The small angle between spin and magnetisation

will give rise to a torque on the spin which will cause it to precess around the moving

exchange field. This precession will allow the spin direction to track the local

exchange field direction to a greater or lesser extent depending on the timescales

of the precession and the wall rotation. As the electron traverses the wall of thickness

D the exchange field will rotate around it with an angular frequency !wall ¼ pvF=D.

Meanwhile, the Larmor frequency of the spin in the canted exchange field is given

by !Larmor ¼ J=�hh, with J the exchange energy. The maximum angle 	0 will develop

once every Larmor precession and can be estimated as the angle that the exchange

field rotates through in half a Larmor precession

	0 ¼
p2�hhvF?

EexchangeD
, ð36Þ

which reduces to

	0 ¼
2p�hhvF

EexchangeD
ð37Þ

after averaging over the Fermi surface, assumed to be spherical. Since we have

assumed that !Larmor > !wall, 	0 will in general be small, so that sin 	0 � 	0. It then
follows that the magnetoresistance within the wall can be written as

�R

R
¼

2P

ð1� PÞ2
2p�hhvF
Eexchange

� �2
1

D2
: ð38Þ

In practice the entire sample, both domains and walls, is measured. In order to

account for the dilution effect of the domains on the actual measured MR it is

necessary to multiply this result by D/d, where d is the average domain size.
The following year, Levy and Zhang published a fully quantum mechanical

version of essentially this model [183]. The Hamiltonian they used is

H0 ¼ �
�hh2r2

2m
þ VðrÞ þ J� � M̂MðrÞ, ð39Þ

where V(r) is the non-magnetic periodic potential and � is the carrier spin vector.

(We use a notation where the other symbols will have the same meanings as in the

Viret model as far as possible.) This is the same Hamiltonian that is used to describe

the GMR in magnetic multilayers and the eigenstates of this Hamiltonian are
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referred to as the spin-dependent band structures of ferromagnetic metals. Whenever
the magnetisation is uniform it is always possible to diagonalise this Hamiltonian
along any chosen axis by making a rotation of the spin operator � to be parallel to
M̂M, using the rotation operator R	 ¼ expð�i 	2 n̂n � �Þ, where n̂n represent the axis about
which the magnetisation rotates. For uniform magnetisation one can always recover
a Hamiltonian of the form

H	 ¼ R�1	 H0R	 ¼ �
�hh2r2

2m
þ Vþ J�z: ð40Þ

However when the magnetisation is not collinear, i.e., a domain wall is present,
then, rather than diagonalisation taking place, extra terms are generated in the
Hamiltonian. This is because the rotation required is a function of position within
the wall. Position and momentum are noncommuting variables and so the rotation
operator will not commute with the kinetic energy. Levy and Zhang found that

R�1	
�hh2r2

2m
R	 ¼

�hh2r2

2m
þ Vpert, ð41Þ

where the Vpert ¼ R�1	 ½p
2=2m,R	� contains terms in r	 and r2	. This extra term

represents the perturbation of the wavefunctions due to the twisting of the magneti-
sation in the wall. It does not have pure spin eigenstates, the rotating exchange field
in the wall mixes the spin channels, destroying any highly conducting shunt channel.
This is the source of extra resistance in the wall.

Levy and Zhang evaluated this additional resistance using the Boltzmann
equation formalism for a simplified one-dimensional wall structure where
	ðxÞ ¼ px=D for 0 < x < D. For such a wall r2	 ¼ 0, leaving Vpert ¼ ð�hh

2=2mÞ
ð� � n̂nÞr	 � p. Working up to first order in Vpert, additional terms appear in the
eigenstates of H0 þ Vpert which have a leading coefficient of


 ¼
p�hh2kF
4mDJ

, ð42Þ

which represents departures from adiabaticity and is the spin-mixing parameter. (If
the wall rotation is slow enough that perfect adiabaticity is maintained then the spin
channels remain completely decoupled.) To obtain a large DWR it is necessary to
make 
 as large as possible – one way that this can be achieved is to have a narrow
wall, since 
 � 1=D. By calculating the matrix elements of the perturbed wavefunc-
tions with a standard spin-dependent scattering potential, two useful formulae were
found. These correspond to two basic measurement geometries, named after the
corresponding geometries for GMR measurements: current in wall (CIW) where
the current density lies in the wall plane; and current perpendicular to the
wall (CPW), where the current flow is normal to the wall. The formulae give
the magnetoresistance ratios of the wall in terms only of 
 and the spin-resolved
resistivities of the metal �" and �#. The formulae are:

MRCIW ¼
�CIW � �0

�0
¼

2

5

ð�" � �#Þ
2

�"�#
ð43Þ

and

MRCPW ¼
�CPW � �0

�0
¼MRCIW 3þ

10
ffiffiffiffiffiffiffiffiffiffi
�"�#
p

�" � �#

� 	
, ð44Þ
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where ��10 ¼ �
�1
" þ �

�1
# is the magnetically saturated resistivity of the metal. In fact,

it can be seen after some manipulations that the formulae actually depend only on
the spin-asymmetry ratio � ¼ �#=�" [184], so that the MR depends only on 
 and the
polarisation of the current given by equation (8). This model has been widely used
since equations (43) and (44) are so closely linked to experimentally measureable
quantities.

Both the Levy and Zhang quantum model and the Viret et al. semiclassical model
share some important features. In both cases, the MR ratio is independent of the
overall scattering rate. It is the degree of spin-polarisation of the current that deter-
mines the size of the effect, so one would desire that this is large in order to obtain
measurable effects. Also in both cases the MR ratio within the wall is inversely
proportional to the square of the wall thickness, so that narrow walls are required
to obtain a large MR. The lengthscale is set not by the randomisation of the momen-
tum of the electrons by scattering since the scattering rate is not important. Hence
there is no need for the electrons to traverse the wall in a ballistic manner, they may
scatter many times as they do so. It is set instead by the rate at which the spin of the
electrons can relax to track the changing magnetisation direction in the sample.

Not all theories predict that the presence of a wall will increase resistance. For
instance, the linear response theory of Tatara and Fukuyama describes the manner
in which the spatially inhomogeneous magnetisation within the wall can contribute
to the decoherence of the electrons, reducing the quantum contributions to the
resistance [185]. This is predicted to be a measureable effect in a sufficiently narrow
nanowire, where the quantum part of the resistance may dominate over the classical
Boltzmann part. (Similar physics was studied numerically by Jonkers [186].) The
same authors used a similar formula to treat magnetoresistance effects in mesoscopic
spin-valve type devices [187]. Tatara has also calculated the resistance of a domain
wall based on the Landauer formalism [188], and recovered the linear response
result, at least for a four-terminal measurement geometry. Using this formalism
the density of states in the sample and leads appears transparently in the formula
for the resistance. In a similar publication oscillations in conductance with
magnetisation variations are predicted in mesoscopic systems by Lyanda-Geller,
Aleiner and Goldbart [189], due to geometric gauge and phase effects.

Like Levy and Zhang, Tatara and Fukuyama described their ferromagnet as a
simple two-band system. Real ferromagnets are complex multiband systems, and the
use of a realistic band structure is needed to really describe the electronic properties
in detail. Brataas, Tatara and Bauer treated scattering in domain walls in the
diffusive limit of transport for a multiband system with a state-dependent scattering
lifetime [190]. A ballistic calculation, in the spirit of a model of band structure effects
on the GMR [191], was given by van Hoof et al. [192] using realistic band structures
of Fe, Co, and Ni. These two approaches were synthesised in a longer article
by Brataas, Tatara and Bauer [193]. In the ballistic case the predicted magnetore-
sistances for a two-band model are so small (�1 part in 105) that experimental
deconvolution from other signals will be all but impossible. The use of realistic
d-band structures can enhance this effect substantially, up to sizable fractions of a
per cent change in resistivity. Calculations were also made for the magnetoresistance
of an atomically abrupt wall, which was found to be several tens of per cent. In all
cases it was found that domain walls increase the resistivity.
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In the diffusive case, some simple formulae are derived in different limits by

Brataas et al. [193] for normal incidence of the current density. A diagrammatic

approach similar to that of Tatara and Fukuyama [185] is used, and the Kubo

formula is used to obtain the conductivity. For a small exchange splitting, the

magnetoresistance of the wall is given as

�R

R
�

3EwEF

20J2
ð�" � �#Þ

2

�"�#
, ð45Þ

where the symbols used by Brataas et al., have been translated into those used in the

Levy–Zhang expressions, equations (43) and (44). These expressions have a great

deal in common, although they are not identical: the magnetoresistance / 1=J2, and
does not depend on the overall scattering rate – only the ratio �"=�# is important.

The wall energy term EW ¼ �hh2
P

q jaðqÞj
2=2m contains the square of an inverse length

related to the wall thickness, just as the Levy–Zhang formula gives MR / 1=D2.
For a very large exchange splitting, such as that found in a half-metallic material,

the magnetoresistance was given as

�R

R
�

Ew

�

�

2J
�
3

5

�

2J

� �2
1�

�"
�#

� �� 	
, ð46Þ

where � is the chemical potential. Here the first term is additional intraband scatter-

ing of majority spin carriers caused by the wall, whilst the second is so-called virtual

transport by minority carriers which can give rise to a negative contribution when

�# > �", although the total MR is always positive. Again a 1/D2 proportionality is

implied by the wall energy term. Using these formulae Brataas et al. predicted a

measureable signal in the diffusive case for cases where the spin dependent lifetimes

differ substantially.
An alternative approach was given by van Gorkom, Brataas and Bauer [194],

who estimated the change in resistivity within the Drude formula for a change in

magnetisation, i.e., a redistribution in number density of carriers from one spin

channel to the other. In this model it is possible to obtain a DWR of either sign,

depending on the ratio of the relaxation times in the spin-" and spin-# channels.

In practice these effects are likely to be small, although changes in the local band

structure in a domain wall in Fe have been detected experimentally using

spin-polarised scanning tunnelling microscope (STM) techniques [118].
Dugaev et al. have treated the problem of transport through a domain wall

taking full account of possible spin and charge accumulation [195]. A proper

description of the electron–electron interactions modifies these distributions, as

they are screened off by the interacting electron gas. These accumulation effects,

shown in figure 15, modify the local transport parameters at the wall such as relaxa-

tion times and spin-resolved conductivities. Subsequently the same authors discussed

how these effects will give rise to a DWR [196, 197]. Dzero et al. also looked at the

role of spin accumulation in generating DWR (in the limit of a ballistic wall) and

found even–odd effects in the number of walls in a nanowire, so long as all the walls

are within a spin diffusion length of their neighbours [198]. This type of spin accu-

mulation was put forward as a possible explanation for the very large MR observed

by Ebels et al. in a Co nanowire [90], although the calculation of Šimánek showed
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that a large part of the spin accumulation is suppressed by the spin tracking the
rotating magnetisation [199]. (Dzero et al. also examined the depolarising effects of
a wall – either Bloch or Néel – of finite thickness and found that the results of Ebels
et al. could not be explained by their theory: as a result they proposed a new type
of wall geometry, which they dubbed the linear wall, details of which remain
unpublished.) The same formalism was used by these authors to look at the
effects of laterally constraining the system in a nanojunction geometry and large
magnetoresistances were found [200]. To examine very thin walls, it is necessary
to cross over to a scattering matrix approach [201], where even larger effects were
predicted – the development of these models was in response to the very large MR
effects found in nanocontacts of the type that we will discuss in section 4.4.

The problem of an ab initio calculation of DWR is a difficult one, involving, as it
does, a non-collinear spin structure, hence all the theories discussed up to this point
have taken a phenomenological point-of-view to a greater or lesser extent. Gallego
et al. have built upon a detailed calculation of the band structure of NiFe alloys [202]
to perform first principles calculations of the structure and resistivity of domain
walls in walls in an alloy close to the permalloy composition: fcc Ni85Fe15 [203].
The Kubo-Greenwood formula was used to determine the conductivity tensor:
comparisons of �xx and �yy then naturally contain information about the AMR in
the material: these authors found that the wall resistivity was higher (up to a factor
of �2 for unrealistically thin walls) than in a uniformly magnetised state for all
geometries and wall thicknesses, whilst the AMR is substantially reduced within
a wall – roughly an order of magnitude less.

The geometry of a narrow wire is a common one for many calculations.
For instance, Bergeret, Volkov, and Efetov presented a quasi-classical, materials

Figure 15. The calculated spin (left panel) and charge (right panel) accumulation at a domain
wall for different values of the spin coupling constant. The spin coupling constant gs is given
in units of erg1=2 cm3=2, whilst L is the characteristic Landau-Lifschitz wall width. Due
to screening effects and charge conservation, the integrated charge at the wall vanishes.
After Dugaev et al. [195].
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independent model for calculating the conductance changes due to a domain wall in
a mesoscopic magnetic wire [204]. They considered both the cases of a thin and
a thick wall in the diffusive limit, which can also be viewed as the cases of weak
or strong exchange: the significant ratio is J=ðD=D2

Þ, where J is the strength of the
exchange field, D is the diffusion constant and D is the thickness of the wall. In the
weak exchange/narrow wall limit, the conductance can be calculated for any wall
profile, and is found to always be larger than for an abrupt wall but less than a
uniformly magnetised state. In the strong exchange/wide wall limit, the wall is still
found to always be a source of additional resistance, with the excess conductance
�1=w2, as in the Levy-Zhang picture. Again the magnetoresistance ratio depends
only on the spin-polarisation of the current.

Yavorsky, Mertig, et al. modelled the effect of non-collinear magnetisation in
single crystal Fe using ab initio band structure calculations to provide input to a
linearised Boltzmann equation [205]. Narrow walls of less than 10 monolayer thick-
ness were required to give an appreciable MR in this system, much thinner than in
typical bulk Fe. In a similar study, the Landauer-Büttiker approach to calculating the
conductivity was used to treat band structures for fcc crystals of elemental
ferromagnets by Kudrnovský et al. [206]. Again, only walls a few monolayers thick
showed a large effect. A free electron, empty sphere, model was used as a reference
which reproduced the 1/D2 domain wall thickness dependence, but for the realistic
band structures, other results were found: in Ni the domain wall magnetoresistance
(DWMR) goes as 1/D, whilst in Co a 1=D1:3 dependence was computed. These results
were generated for clean crystals, and so are essentially in the ballistic regime.
Disorder was studied using lateral supercells: Co doped with 16%Cu (non-magnetic),
Ni (parallel moments to the Co matrix) and Cr (antiparallel moments). In all cases the
conductance drops when a domain wall is present, and the drops are most substantial
for the magnetic impurities, regardless of the coupling of the moment. In the extreme
one-dimensional limit of a nanowire at low temperatures, where a Luttinger liquid
picture must be used, Pereira and Miranda predict that the introduction of a domain
wall can switch a ballistic conductor into a spin-charge insulating state [207].

Koma and Yamanaka reported an interpretation of results published on
DWMR measured in nanowire geometries (a specific example they cite is that of
Otani et al. [208]), based on the novel principle of the current distribution taking the
form that leads to minimum heat generation in the wire. They looked in detail at the
interaction of domain wall pinning potentials and electron scattering potentials
[209]. For instance, the presence of a wall at the position of a certain impurity
scattering potential may decrease the overall scattering at that point. In this case,
it is favourable from the point of view of heat generation for the wall to occupy that
site when current flows. It is the same structural defects that give rise to both the
electron scattering and also the pinning of a domain wall. If the wall occupies
a pinning site that happens to be associated with strong scattering, the local
temperature will be high, and it will be able to fluctuate to a position where the
scattering is less. This principle is able to explain why the presence of a wall might
increase the conductivity, although other, extrinsic effects are not considered. There
are also some interesting corollories of these ideas, for instance a depression of the
Curie point under current flow. The interaction of walls with pinning potentials was
also addressed by Nakamura and Nonoyama [210]. The trapping of a wall in
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a pinning site will reduce the degree of spin fluctuation around it, suppressing of the

increase in resistance that might otherwise arise.
The more complex geometry of a zigzag wire was treated by Zhang and

Xiong: a micromagnetic model was used to determine the equilibrium domain

structures, which can be controlled by the direction of the external field, followed

by a transfer matrix approach to calculation of the zero temperature conductance

[211]. The use of a micromagnetic model was an important advance, as this meant

that it is no longer necessary to make the drastic simplifications in the form of the

domain wall that most analytical theories do – although as with all numerical

techniques, there is a certain loss of physical transparency. The mechanism of

DWR was found to be spin channel mixing ( just as for the Viret [182] and

Levy-Zhang [183] models), but there was a less simple dependence on the thickness

of the domain wall. An increase in conductance is found for very thin walls, whilst

conductance is reduced for thicker walls – naturally this leads to a crossover

thickness where the presence of the wall has no effect on conduction. The final

results were in accord with experimental findings in a Co zigzag wire [212, 213],

where negative DWMR was observed.
Gopar et al. examined the quantum wire geometry within a two-band model in

order to examine carefully the degree of adiabaticity in the spins traversing the wall

[214]. The important parameter was the longitudinal kinetic energy of the electron:

for low values of this energy (as compared to the exchange splitting in the ferro-

magnet) the process is almost adiabatic. Only electrons with a longitudinal energy

large compared to the exchange will show significant scattering at the wall due to

spin mistracking. This provides a justification for only considering carriers with

velocity vF in the derivation of equation (38) [182]. Extending this work, Falloon

et al. have made use of the magnetoelectronic circuit theory of Brataas, Nazarov,

and Bauer [215, 216] to examine both the DWR and the spin-transfer torque at a

domain wall [217]. The latter will be dealt with in section 5. They derive the following

formula for the magnetoresistance of a single wall in a wire

MR ¼
‘sd þD=2

Lwire

2P2

1� P2

1� f

1þ 
f
, ð47Þ

where Lwire is the length of the wire, 
 is the ratio of sum of the spin-resolved

resistances R" þ R# to the ballistic resistance of the wire R0 ¼ h=Ne2, and f is the

fraction of spin-flip scattering. This last term accounts for the degree of adiabaticity.

The first term simply gives the dilution of the signal for a long wire containing

uniformly magnetised domains separated by the wall which will not contribute to

the MR signal. The relationship of the central term containing the polarisation P

to the Julliere formula for tunnelling (equation 38) and the Viret semiclassical

formula for the domain wall MR (equation 38) is striking. An order-of-magnitude

agreement with the results of Ebels et al. [90] was achieved for a reasonable choice

of the various parameters.
Returning to ferromagnetic semiconductors, a domain wall in such a material

may not simply be a source of resistance: it can give rise to non-linear transport

similar to that observed in a p–n diode [218]. Vignale and Flatté make their

calculation using expressions very similar to the conventional Schockley formulae.
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This result makes strikingly clear the analogy between spin-" and # carriers in these
materials and electrons and holes in conventional materials.

It is clear that the problem of DWR – simply stated but difficult to solve – has an
obvious appeal to theorists, with many different models and mechanisms proposed,
and a wide variety of different results obtained from them. The predictions are
diverse: even the sign of the effect is not clear. Experiments are obviously necessary
to decide which models are the more accurate descriptions of the effects that actually
obtain to real systems. Recent experimental progress is reviewed in the next section.
Nevertheless, it will perhaps be helpful to make a short summary of this section on
theory before moving on. Of all the theories that have been presented, the spin
mistracking models of Viret [182] and Levy and Zhang [183] were dwelt on in
some detail. That is because this physical picture was based on the models of
GMR that were convincingly established in the early years of the 1990s. Both models
predict a rise in resistivity when the magnetisation becomes non-uniform, that this
rise is proportional to the saturated resistivity (so that ��=� is independent of the
overall scattering rate), and that the rise is larger for higher current polarisations and
narrower walls. As we shall see the experimental picture is superficially rather murky,
with many reports of measurements of resistance changes associated with domain
walls, but only a few experiments succeeded in truly detecting the intrinsic DWR that
the theories seek to describe. Amongst this set of results there is a degree of
consistency. In the view of the author, all of this subset of experimental results
can be convincingly interpreted within the spin mistracking model, and lend a strong
support to it. Let us now move on to review the large number of experimental results
that have recently appeared in the literature.

4.3. Recent experimental results

There has been an explosion of interest in the transport properties of domain walls
in roughly the last decade. In this rather lengthy section, the various experimental
results obtained by the various groups involved will be reviewed. As there is a great
deal of relevant literature to be discussed, the material has been broken into
three sections: results on homogeneous thin film samples; results from multilayer
heterostructures; and finally results from mesoscopic samples where the film in
question has been patterned into a nanoscale device, the small size of which has
an effect on either the magnetic domain structure or the transport properties, or
both. A discussion of the growing volume of literature describing the work on
magnetic point contacts is deferred until section 4.4.

4.3.1. Homogeneous materials. In this section, we review recent results on thin film
samples which are neither patterned to mesoscopic dimensions nor contain complex
multilayer heterostructures. All the results show an increase of resistivity when
domain walls are introduced.

The semiclassical model of Viret et al. given above was accompanied by
experimental data on polycrystalline, in-plane magnetised Co and Ni films in the
first ‘‘modern’’ study of DWR [182]. Due to the comparatively wide walls in these
materials (15 nm in Co and 100 nm for Ni were assumed) and also the very large
typical domain sizes (4 mm in Co and 50 mm in Ni) the measured signals are rather
small – the magnetoresistance is dominated by the AMR. The symmetry properties
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of this effect were used to subtract it from the measured signal: it can be seen from
equation (10) that the AMR �cos2 	, where 	 is the angle betweenM and J. A pair of

measurements were performed where the current flow is along and across the field
direction, which must be carefully chosen so that magnetic anisotropies in the sample
do not affect the reversal mechanism. These will generate AMR signals that
are / cos2 	 and / sin2 	 respectively. If there is no other effect than AMR in the

sample these two terms should add to a constant. Any deviations from this reveal a
magnetoresistance of other origin: in the measurement of Viret et al. a small (�10�5)
effect was found for the entire film, including the effect of domain dilution. This is
due to the fact that the walls only occupy a small volume fraction of the film, and so

one must account for this volume fraction when calculating the total MR that will be
measured. An order of magnitude agreement was found between the experimental
results and the model encapsulated in equation (38), as well as the fact that the Ni
signal was slightly higher than that of Co. The data obtained for the Co film is

displayed in figure 16.
In the same year, a related group of authors published results on the MR of a

single epitaxial film of (0001) hcp Co that had a magnetic easy axis along its crystal-
lographic c-axis, normal to the film plane [219, 220]. This lead to a dense stripe
domain state, with a large number of Bloch walls passing through the film. One
might anticipate that this is a favourable state for the observation of a domain wall

MR signal, as the walls are comparatively narrow, and the effects of dilution will not
be so great as in the previous in-plane magnetised case. Indeed, a resistivity
reduction of �1% was measured when a perpendicular field large enough to saturate
the film was applied. In this case, the authors claimed that since they are able to

prepare a stripe domain state, it is possible to arrange that the current will flow
perpendicularly through every wall, and since they are Bloch walls the magnetisation
will always be orthogonal to the current direction, precluding the presence of any
AMR contribution to the measured signal. With hindsight it is possible to find two

flawed assumptions in this argument. In the original paper the MR signal did not
depend on whether or not the special in-plane demagnetising procedure required

Figure 16. On the left, magnetoresistance measurements in longitudinal (�jj) and transverse
(�?) geometries for a 28 nm thick Co film. The peaks occur at �Hc. On the right, the
domain-wall-scattering induced resistivity obtained by adding transverse and longitudinal
magnetoresistance curves. The very small signal is due to the dilution caused by the small
volume fraction of the sample occupied by the domains. After Viret et al. [182].
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to obtain the well-aligned stripe state had been carried out. In the isotropic maze
domain pattern that was more usually obtained the current will be flowing along, not
normal to, half of the walls on average, giving rise to a resistivity enhancement
through the usual AMR mechanism, as in these regions M and J will be parallel
to one another. This enhancement will be removed when the film is brought into a
saturated perpendicular state.

Moreover, the assumption that the walls have a perfect Bloch character is also
hard to justify. The Q factor of the Co films was in fact only �0:35, not high enough
to prevent the formation of Néel caps that occupy a substantial fraction of the height
of the film (see section 3.1.3), as demonstrated experimentally using ferromagnetic
resonance (FMR) by Ebels et al. [221]. These caps will introduce a resistivity
enhancement through the AMR even in the fully aligned stripe state. A thorough
study of the micromagnetics and related MR of epitaxial Co films by Rüdiger et al.,
is discussed in more detail in section 4.3.3, showed that there is in fact no discernible
domain wall MR in this system, and the measured signal is in fact related to the
AMR that occurs in the Néel caps [222]. This interpretation was also questioned by
Knittel and Hartmann, who claimed that it is necessary to take into account surface
scattering, to explain the temperature dependence of the MR in these films [223],
followed up with a later experimental study of permalloy [224]. Nevertheless it was
the original, albeit misinterpreted results, that inspired the model of Levy and Zhang
[183], subsequently supported by many other experimental results in more controlled
geometries.

Much higher Q factors are required to unambiguously remove the AMR signal
in this geometry: Q>1 is the the minimum requirement. Klein et al. measured the
MR of thin films of SrRuO3 with a Q factor exceeding 10 [225]. This is due to the
huge magnetocrystalline anisotropy possessed by this material, a metallic perovskite
and 4d itinerant ferromagnet with a Curie point of �150K. Again a well-defined
stripe domain structure was obtained, which was extensively characterised by
Lorentz mode transmission electron microscopy [226]. In this case the very high
value of Q meant that the walls had a very pure Bloch character, and one can be
confident that the AMR signal will be small. Again a stripe domain state was
obtained, and the sample was patterned into an L-shape in order to have arms
where the current flows parallel and perpendicular to the stripe domains. The wall
MR could then be measured, shown in figure 17. Complex and differing temperature
dependences for the two directions were observed, although in both cases the DW
resistivity dropped abruptly at the Curie point of the material. The domain wall
thickness was estimated to be only 3 nm due to the very high anisotropy, and so large
effects are to be expected. Indeed, after domain dilution had been taken into account,
the low temperature resistivity presented by a wall to a perpendicular current is
�35 m�cm, very high when compared with the �5 m�cm resistivity of the saturated
film. Klein et al., not unreasonably, questioned whether the models based on wide
walls and spin tracking can describe results where the wall is so thin. It is clear that
this is a borderline case, as the 30 Å wall width will still be much larger than the
Fermi wavelength, and so the Cabrera and Falicov abrupt wall picture [177] will fail
to predict the �600% effect that was observed. Treating the wall as an abrupt
interface within the Barnaś and Fert model [227] for scattering at a magnetic
interface yields an interfacial specific resistance �1 f�m2, just what was measured.
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In a follow-up paper the same group of authors examined the effect of domain

dilution by cooling the sample in different fields to obtain different stripe widths

[228] – the wall thickness is a material specific quantity and will not be changed. They

found that the temperature dependence of the domain wall MR in the perpendicular

current geometry was simply diluted to a greater or lesser degree, indicating that

scattering at different walls is uncorrelated. However, in the parallel geometry the

simple dilution picture fails. The details of the mechanism of the MR in this

geometry remain a challenge to current theory. Some steps towards unravelling it

were taken by Feigenson et al., who reported on the angular dependence of domain

wall MR in SrRuO3 [229]. Transport stripes were patterned from films with stripe

domains at several different angles on a single substrate, and the results interpreted

in terms of spin accumulation and potential step contributions. The spin

accumulation signal was found to vary as sin2 	, whilst the parameter representing

the potential step part showed a strange oscillatory behaviour that was reproduced

between samples.
Another material shown to display a very large magnetoresistance is the

manganite Pr2/3Sr1/3MnO3 [230], which may be grown epitaxially on (001) LaAlO3

to provide a compressive strain that yields an out-of-plane anisotropy. The same

material grown on (001) SrTiO3 or (110) NdGaO3 gives lattice matching or tensile

strain respectively, which leads to an in-plane magnetisation and a small MR.

The wall thickness in this material is estimated to be 6–8 nm, and under suitable

field preparation conditions a dense domain pattern can be observed. This leads to a

large MR ratio in thin films that is as high as �400% in a 6 nm film at 50K. Oddly,

the effect is much smaller at both higher and lower temperatures. The thickness

Figure 17. Hysteresis loops of resistivity vs. applied field for current parallel and
perpendicular to the domain walls at T ¼ 5K. At the starting point with H ¼ 0 (marked by
full circle), the sample is in its domain structure. The Q-factor of this domain structure exceeds
10. Increasing the field annihilates the DW, and when the field is set back to zero the
magnetisation of the sample remains saturated. The difference between the initial zero-field
resistivity and the subsequent zerofield resistivities is identified as the domain wall resistivity.
After Klein et al. [225].
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dependence in this material is intriguing: huge effects are found for films in the nm
range, whilst a 20 nm thick film showed at most a few per cent MR [231]. The thinner
films show a lower conductivity, but reducing the conductivity of a thicker film by
changing the doping does not increase the MR, indicating that it is probably not the
carrier density that causes the effect. Thin films might give rise to more scattering site
defects, but it is not clear why these should give rise to huge magnetoresistances.
La0.7Sr0.3MnO3 (LSMO) films were studied by Wu et al. [232] in various strained
states. In thin films of LSMO on (100) LaAlO3, the strain-induced perpendicular
magnetic anisotropy gives rise to stripe domains on a �200 nm lengthscale, imaged
by magnetic force microscopy (MFM), which give rise to a contribution to the
resistance that, whilst small, is still larger than would be anticipated from double
exchange theory.

Atomically abrupt changes in magnetisation direction occur at antiphase bound-
aries in Fe3O4, where adjacent sites are antiferromagnetically coupled – shown in
figure 18. These can give rise to magnetoresistive effects, which have been measured
and modelled by Eerenstein et al. [233]. The difficulty in this system is in obtaining
a saturated state, since the application of a field will not overcome the antiferromag-
netic exchange, leading to a twisted spin state near to the boundary, so the MR will
not saturate at any field that can be applied in the laboratory. Effects of the order of
around 10% were measured in a field of 5 T at 125K, and the details of the shape
of the curve with field were accurately reproduced by a simple one-dimensional
micromagnetic model that can be solved analytically.

It is also possible to find transition metal systems with Q factors that exceed
unity: two that have been studied are the materials FePd and FePt with the L10
crystallographic structure. These are ordered alloys with the same structure as
CuAu(I): alternating planes of Fe and Pd or Pt on a slightly tetragonal face centred
lattice, and have very similar properties. (At present we restrict our discussion to
results for FePd, although we examine some results from FePt in section 4.3.3.) This
lattice structure results in a very strong uniaxial magnetocrystalline anisotropy along
the tetragonal axis, normal to the planes of atoms [234, 235]. Such materials can be
grown epitaxially on (001) MgO with the tetragonal axis normal to the film plane,
giving rise to a dense stripe domain pattern with Q factors of the order of two [236].

Figure 18. Spin orientation of two ferromagnetic chains with antiferromagnetic coupling
at an atomically sharp boundary subject to a magnetic field. After Eerenstein et al. [233].
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The first measurements of MR of L10 FePd films were made by Ravelosona et al.
[237]. The dense domain structure and narrow walls in these high Q films means that
the resistance of the whole film is �0:5% higher when the domain structure is
present, exceeding the AMR, see figure 19. After accounting for dilution (using
estimated wall widths of 10 nm) the DWMR is �6% at helium temperatures,
decreasing to about 2% at 200K. Ravelosona et al. made estimates of the relevant
parameters in the Levy-Zhang theory [183] and found at least order-of-magnitude
agreement, in particular noting that the ratio � ¼ �#=�" extracted varies from
roughly 5 at 200K to 20 4.2K. This is the first experimental measurement of � by
a DW scattering technique. Subsequent similar measurements of the same material
by Marrows and Dalton [184] that included a more detailed micromagnetic analysis
of the temperature dependent domain size and wall thickness, but used essentially
the same interpretation of the Levy-Zhang theory, produced fuller temperature
dependence for �. The Levy-Zhang model does not include spin-flip scattering
(there is no term for �"#ð#"Þ) and so what is measured in both cases is some
‘‘effective’’ value for � that takes account of all scattering processes. Ravelosona
et al. concluded that their results were consistent with the temperature dependent
part of the resistivity being spin-independent (consistent with the findings of Fert in
pure Fe [238]). In the later work, the power law for this part of the scattering was
found to be consistent with this scattering being dominated by magnon scattering in
this particular material – this conclusion is supported by both the overall �ðT Þ � T2

behaviour of the resistivity over a wide temperature range and the high field MR in
the paraprocess [57].

In both the previous measurements an average over the CIW and CPW
geometries in the Levy-Zhang model was made to take proper account of the
isotropic labyrinth form that the stripe domains take in such a sample after
demagnetisation in a vertical field. Viret et al. measured separately the CIW
and CPW contributions [113] by taking advantage of the fact that under certain
growth conditions [239] a virgin state with well-aligned stripe domains along a
particular direction can be obtained. By patterning the sample into a so-called
Union Jack geometry, it was possible to measure the MR in both of two ortho-
gonal directions during a field sweep. During the virgin branch of the curve these
were found to differ as they correspond to the CIW and CPW geometries: they
are almost identical after saturation as the sample returns to an isotropic domain
state after saturation. The difference allowed Viret et al. to experimentally deter-
mine the difference in DWMR for the two geometries and found it to be 8.2%
for CPW and 1.3% for CIW. This asymmetry is consistent with the Levy-Zhang
model for a value of � of about 10, and represents an important experimental
verification of the theory. This ratio of CPW/CIW MR was disputed by Snowden
et al. [240] using a Ni film, but the lack of details of the micromagnetic state
of that sample make it difficult to judge the level of concern that this should
raise.

4.3.2. Heterostructures. One way that thin walls of controllable thickness can be
produced experimentally is through the use of hard–soft multilayer exchange spring
systems. These may be conveniently grown as multilayer stacks, giving walls at every
interface when the soft component is magnetically reversed, although the matter is
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then complicated by the presence of scattering at the magnetic interface. As the
reverse field is increased, the wall is wound increasingly tight against the interface
until finally the coercive field of the hard component is reached, and a magnetically
saturated state is recovered. A variation on this theme is the domain wall
junction trilayer [241], where a wall is compressed against an artificial energy barrier.

Figure 19. MR of a L10 ordered film of FePd at 4.2 K. (a) Complete hysteresis loop, and
(b) detail of the positive branch. The inset to panel (b) indicates schematically the wall
motion as the field is varied. The slight decrease of the resistivity above HN is probably due
to magnon damping: an increase in M above Msat caused by the applied field. This is an
updated version, with a correctly labelled ordinate, of a figure first published by Ravelosona
et al. [237].
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This fact that the wall thickness can be changed by varying the applied field opens up
a useful additional degree of freedom that can be exploited experimentally. One of
the first studies to make use of this geometry was made by Mibu et al. [242] using
SmCo/NiFe. The measured signal in this system was dominated by the AMR, with
the MR from domain walls being less than 0.1%. This was due to the fact that the
walls in the exchange spring cannot be wound very tightly as the coercive field of the
hard SmCo layers was only �0:25T, giving wall thicknesses in the NiFe of 30 nm.
This is much less than in a sheet NiFe film, where values of a micron might be
expected, but compares poorly with the high Q stripe domain materials discussed
in the previous section.

A route out of this impasse is offered by selecting a pair of hard and soft
magnetic materials that will exchange couple antiferromagnetically – a scheme
reminiscent of the antiphase boundary in magnetite [233]. Gordeev et al. have stu-
died the MR of epitaxially grown DyFe2/YFe2 multilayers [243]. In the magnetically
hard DyFe2, the Dy and Fe moments will couple antiferromagnetically, giving
a ferrimagnetic material: this is commonplace for the coupling between a heavy 4f
and a 3d moment in alloys. The net magnetisation was parallel to the very large Dy
moments (�10 mB/atom). The coercive field of this hard ferrimagnet was somewhat
in excess of 1 T. The Fe moments in both layers will be ferromagnetically aligned,
so that the overall result was a soft YFe2 film antiferromagnetically aligned
to a much larger, and harder, DyFe2 moment in the neighbouring layers. The
structure remained in a collinear antiferromagnetic state up to an applied field
termed the bending field, where the central portion of the softer YFe2 began to
rotate. This was �7T at 100K in the [45 Å DyFe2/55 Å YFe2]� 40 multilayer in
question. As the field was increased beyond this point the DyFe2 layer magnetisation
was held more and more rigidly by it, whilst the rotated region in the centre of the
YFe2 spread, squeezing the exchange spring planar domain walls more and more
tightly against the interfaces. Using a micromagnetic theory of these discrete
exchange springs [244], wall thicknesses as narrow as about 2 nm were obtained at
the highest fields probed, 23T. At this field a measured MR of 12% was achieved
with the current flowing in the plane of the layers. This was equivalent to a 32% MR
within the walls using a simple parallel resistor model. Example magnetisation and
MR data for this system are displayed in figure 20. The field dependence of the MR
was well described by a combination of the micromagnetic model to predict the
wall width, combined with the Levy-Zhang model of the CIW domain wall MR,
confirming the wall thickness dependence of 1/D2 in that theory.

Of course it is natural to wish to drive the current through the exchange spring
walls in a current-perpendicular-to-the-plane (CPP) geometry. This is what has been
done by Prieto et al. using NiFe/Gd/NiFe trilayers patterned into pillars [245].
At room temperature, the Gd will be barely magnetised (the Curie temperature is
293K) and so the NiFe layers will adopt a flux-closed antiparallel configuration. As
the sample is cooled the moment of the Gd will grow until it becomes possible for the
NiFe layers to take up a parallel configuration with all the flux closed through the
Gd layer. For thin Gd (2 nm) this transition in magnetic state did not take place until
�70K. Above the transition temperature the Gd will be ferromagnetic, but must
have its magnetisation oppositely directed at each of the two interfaces in order to
satisfy the exchange coupling with the two antiparallel NiFe layers. In this way
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a 1808 domain wall was generated in the Gd where the magnetisation rotates over
exactly the thickness of the layer.

The MR of these devices was measured using �103 devices connected in series to

provide a large voltage signal. The MR of the devices was complex, with multiple

hysteretic peaks appearing during the field sweep. Only certain peaks showed the

proper temperature dependence that would be associated with domain wall effects:

the others are ascribed to a spin-valve effect between the two NiFe layers as they
re-orient from parallel to antiparallel. Estimates of the MR due the wall in the Gd

give ��=� ratios that are �23% for the 4 nm layer and �31% for the 2 nm layer.

These were compared to the Levy-Zhang model [183], which gives predictions of

the same order of magnitude for reasonable assumptions about the band structure

parameters appropriate for Gd. The value of MR for the thinner (2 nm) Gd layer is
too small, both in terms of the estimates of the model, and applying a straightfor-

ward 1/D2 scaling to the 4 nm result. As the authors wrote, it seems likely that this is

due to a certain fraction of the spin spiral actually being taken up by the NiFe layers.
Prieto et al. have also studied the Fe/Gd multilayers to investigate the scattering

at the interfaces, where the Gd and Fe magnetisations will be oppositely directed due
the antiferromagnetic exchange there [246]: a very similar magnetic structure to the

antiphase boundaries in Fe3O4 [233]. Just as in the DyFe2/YFe2 multilayers [243],

in-plane spring domain walls can be formed, although it was found that these played

a rather minor role in the transport in this particular case. The MR was predicted

based on the Valet–Fert model [76], with the angle between the Fe and Gd moments
at the interface based on a simple micromagnetic model. A comparison of this with

Figure 20. Magnetisation M=Msat and magnetoresistance ratio �R=R, for a current parallel
to Bapp, for the superlattice [60 ÅDyFe2/40 ÅYFe2]�40 at a temperature of 200K.
Insets show the simulated spin arrangements. After Gordeev et al. [243].
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the measured MR signal showed that only the case of rather thick (30 nm) Gd and Fe
layers, where substantial twists in the magnetisation can be built up on both sides of
the interface, exhibited any additional signal that could be attributed to the spring
walls. In an extension of this experiment, the same group have gone on to study a
series of Gd/TM multilayers, where the TM layer was either Fe, Co, Ni, Fe/Co/Fe,
or Fe/Ni/Fe, as well as in CoxGd1�x/CoyGd1�y multilayers in the CPP geometry
[247]. In none of these cases was it possible to discern a signal that could be attrib-
uted to anything other than angle-dependent interface resistance or the ordinary
Lorentz force MR, even though wall widths of just a few nm are achieved in both
the Gd and TM layers. The interpretation of these results offered by the authors is
that the DW separates regions of parallel magnetisation in these systems, so that the
wall just represents a barrier that the spins may be scattered at. The idea that this is
fundamentally different to wall separating oppositely magnetised domains carries
with it the idea that spin accumulation of spins that are injected into an oppositely
polarised domain may be a source of much of the MR in these systems.

The magnetoresistance of both types of domain spring systems (with ferromag-
netic or antiferromagnetic exchange at the interface) was modelled numerically by
Inoue et al. using a single band tight-binding model and the Kubo-Landauer formula
[248, 249]. The model included both the MR associated with a change in angle of the
moments at the interface, which these authors call the contact MR, as well as
diffusive effects within the domain walls. Whilst this diffusive resistance always
acts to increase resistivity, the contact resistance may give effects of either sign
depending on the details of the mismatch in the band structures of the two different
ferromagnets. These effects can combine to give rise to a change in sign of the MR
as the wall thickness is changed by the applied field, observed experimentally by
Nagura et al. [250]. The numerical results reproduce the 1/D2 dependence of the MR
on the wall thickness predicted by the analytical theories.

Before moving on, it is interesting to consider the DWR detected in antiferro-
magnetically coupled Fe/Cr multilayers by Aliev et al. at low temperatures [251].
These multilayers show a small MR at low field that these authors argue is related to
the non-uniformity of the magnetic structure – at low temperatures this manifests
itself as a small, hysteretic additional contribution to the resistivity with a T 0:7 power
law dependence on temperature. It was shown to be possible to achieve a good fit to
the data assuming that the DWs in this system contribute to the resistivity through
an antilocalisation effect, similar in nature, though opposite in sign to, the theories
of Tatara and Fukuyama [185] and Lyanda-Geller et al. [189].

4.3.3. Mesoscopic devices. By far, the greatest number of experimental reports
concern studies of domain wall effects in mesoscopic devices prepared by litho-
graphic means. Such structures are convenient for both the controlled injection
and placement of walls as well as providing well-defined transport measurement
geometries.

Ground-breaking work on mesoscopic magnetic wires was done by the Giordano
group at Purdue, on very narrow wires that were fabricated by a so-called step edge
technique [252]. This method uses conventional photolithography to etch terraces
into e.g. a glass substrate, which can then be used as either etch masks or templates
for oblique incidence ion beams or evaporated flux of metal, which allows wires with
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diameters of only a few tens of nm to be formed. These are suitable for localisation

studies, for instance [253]. The initial interest in measuring the effects of domain

walls in these wires was to perform micromagnetometry: such tiny objects cannot be

measured using conventional magnetometers, but are easily probed by transport

techniques. The ability to detect and measure magnetisation reversal with an

electrical measurement is extremely useful in this regard.
The first experiments on magnetic wires investigated Ni structures with diameters

down to 315 Å in size [254]. Dips in the resistance occurred at �130Oe (at 11.2K),

interpreted as the coercive field of the wire, shown in figure 21. The R(H ) curve also

showed reproducible jumps and roughness, Barkhausen features associated with

domain wall pinning and motion. Although the temperature dependence of Hc

was measured, suggesting a crossover from thermally activated reversal to a macro-

scopic quantum tunnelling of walls at very low temperature, there was no discussion

of the actual mechanism by which the resistance was affected by the magnetisation

state, although a dominant AMR mechanism seems likely. This method of

nanomagnetometry using the AMR was discussed at greater length in [255] in similar

Ni wires as well as unpatterned Ni films. (The use of AMR and related effects to

carry out nanomagnetometry is now a rather popular technique [256–262].)

Attempts to fit the MR data to a weak localisation model were rather unsuccessful,

and the high field MR measured in the longitudinal geometry was tentatively

assigned to a modified electron–magnon scattering mechanism. (The same

longitudinal effect was detected in a grating of Fe wires by a group of researchers

from the Cavendish Laboratory, where it was attributed purely to the AMR [263].)

Further discussion along these lines was made in [264] and [265]. In these two papers,

Barkhausen jumps in resistance associated with the depinning of individual domain

Figure 21. Resistance as a function of field for a 315 Å diameter Ni wire at 11.2K. The solid
line shows a positive-going field sweep, the dashed line shows a negative-going one. After
Giordano and Monnier [254].
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walls were observed during magnetisation reversal. These steps in resistance occurred

in the same order and were the same size in each field sweep. The exact field at which

this occurred was found to vary rather stochastically. By choosing and repeatedly

measuring one of these jumps, depinning field distributions could be measured

for a given temperature. These broadened and shifted to lower fields as the

temperature was raised, as would be expected for thermally activated depinning.

However, the distribution width does not extrapolate to zero at 0K. This was

taken to be the signature of a different stochastic process, the quantum tunnelling

of the domain wall out of its pinning potential [266]. The quantised nature of the

energy levels of domain walls in a pinning potential well was revealed by microwave

excitation of the system: the depinning field distribution shifted to lower fields via a

series of discrete levels [267]. Similar wires were used to measure electrical noise [268]

in Ni [269] wires at high temperatures, the noise power was found to peak at 450K

and just below the Curie point (620K) [270]. This was discussed in terms of magnetic

fluctuations.
Giordano and his colleagues turned their attention specifically to the issue of

DWR in 1998. Experiments on Ni wires showed that the presence of a wall reduced

the resistance of the wire somewhat [271]. A difference in resistance of about

3� was observed in a 300 Å diameter wire at 4.2K. For instance, in at least

order-of-magnitude agreement with the weak localisation theory of Tatara and

Fukuyama [272], one would need a 2.5 mm thick wall to account for this resistance

using AMR. The Berry phase theory of Lyanda-Geller et al. [189] might also explain

this effect (as indeed might the band bending model of van Gorkom et al. [194], with

the benefit of hindsight) if more were known about the details of the spin structure in

the wall. Further, similar measurements, with a range of wall preparation fields lead

to a value of the resistance of an individual wall being measured as �0:085� [273].

Changing from Ni to Co wires, resistance jumps showing negative and positive

resistance were observed for different samples [274]. Co wire magnetisation reversal

has been monitored by MR measurements combined with micromagnetic

simulations [275] or MFM [276] – the conclusion in both cases was that the

AMR was primarily responsible for all the features observed. Co has a strong

magnetocrystalline anisotropy with uniaxial symmetry, meaning that it is possible

for grains to have their easy axis directed across the wire, giving rise to more complex

reversal mechanisms than are possible in Ni, where this situation cannot arise. The

most recent paper in this series deals with permalloy wires, where again a negative

DWMR (��0:14�) was reported [277].
Many of the earlier experiments in this field measured a reduction in the

resistance when the sample entered a multi-domain state. A negative DWMR in

was measured in zigzag-shaped Co wires by Taniyama et al. [212, 213]. In this

geometry it is possible to generate two different forms of 908 degree walls at the

zigzag corners. When demagnetised along the length of the zigzag the magnetisation

will flow along the wire, whilst when demagnetised across the wire a head-to-head or

tail-to-tail domain wall will occupy each corner. In this way, it was possible to

remove much of the signature of the AMR by comparing these two states, and as

a result a negative DWMR of �1:8� 10�6 m� cm was found at helium temperatures.

This negative effect persisted up to about 200K, meaning that it is difficult to explain
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through the the dephasing model [272]. Later experiments on Co [278] and permalloy
zigzag [279, 280] and scalloped wires seemed to only show AMR effects.

One of the classic mesoscopic experiments on domain walls was carried out by
Otani et al. on wires and disks of Co [208]. Downward jumps in resistivity were
observed in the wires at the domain nucleation fields, seen in figure 22. The other
geometry investigated was a pair of touching disks, in each of which a magnetic
vortex can be stabilised. In this case a 1808 wall will be formed at the junction
between the disks, which was again found to reduce resistance. The same group
went on to study epitaxial Co wires which showed both positive and negative MR
[281], depending on whether the Co c-axis lay in or perpendicular to the sample
plane, and epitaxial Fe wires that showed negative MR at low temperature and a
rather small positive MR above about 66K [282].

The properties of epitaxial wires were examined in great depth by Rüdiger, Yu,
Kent, and Parkin, in a series of experiments reviewed in [9]. These experiments are
particularly impressive for the quality of the material used and the meticulous care
used to determine the micromagnetic structures of the Fe and Co wires used [283].
This second aspect of the work was critical to the detailed deconvolution of any
intrinsic domain wall signal from all the other various galvanomagnetic effects that
may come into play.

The first experiments reported by this group were performed using (110) epitaxial
Fe films patterned into wires with the (001) easy axis lying across the wire stripe
[284–287]. This leads to stripe domains lying across the wire with a stripe period L
that can be controlled by the wire width W, as the balance of anisotropy K and
domain wall energy means that L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�wallW=K
p

[288]. An MFM image of such
a domain structure is shown in figure 23. The micromagnetics of epitaxial Fe
microstructures was discussed extensively in [289–291].

Figure 22. The longitudinal and transverse magnetoresistance curves for a 2mm wide Co
wire. The signal is dominated by the AMR, but the abrupt jumps in resistance associated with
domain nucleation can be seen. After Otani et al. [208].
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Deconvolving the AMR was done by cleverly taking advantage of the fact that

the anisotropy of the Lorentz MR becomes more pronounced as the temperature is

lowered and is of opposite sign to the AMR – this allows a compensation tempera-

ture to be found where one effect just balances the other. This temperature was

65.5K, where it was found that the presence of walls reduced the resistance of the

wire: the relevant data may be seen in figure 24. Although walls have been predicted

to reduce the resistance through phase breaking effects, destroying weak localisation

correlations [186, 272], this should not take place much above helium temperatures.

Rüdiger et al. found a reduction in resistance at least up to 80K. In fact the effect

was shown to be due to the reduction of surface scattering as electron trajectories are

bent into the bulk of the film, where scattering is low at low temperatures due to the

high crystallographic quality [287]. This mechanism of MR was first discussed

in normal metals over half a century ago by Chambers [292].
The MR of hcp Co films had already been studied, and a small excess of

resistance in the stripe domain state found by others [219]. This group of authors

patterned their very high quality (0001) films into 5 mm wide transport stripes [222]

with residual resistivity of only 0.16 m� cm and a residual resistance ratio of 19, very

high for a thin film sample. A combination of MFM and micromagnetic simulation

was used to determine the domain structure, showing a substantial fraction of Néel

Figure 23. MFM images in zero applied field of a 2mm linewidth Fe wire. Before performing
the MFM images the wire was magnetised in a direction (a) transverse and (b) longitudinal
to the wire axis. After Rüdiger et al. [284].
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closure caps, confirming the FMR results of Ebels, Wigen and Ounadjela [221]. This
is as expected for hcp Co, where Q � 0:35, much less than unity. At the compensa-
tion temperature, the interface resistance due to the walls was found only to be
6� 10�19 �m2, an extremely tiny value. Slight differences in resistance in the CIW
and CPW geometries were found, up to half of which could be ascribed to the Hall
effect. It is clear that the intrinsic domain wall effect in these films is really very small.
The importance of the Q-factor in achieving meaningful results was underlined
by this group’s final experiment on L10 FePt microstructures [293], where
K � 10MJ/m3 is the highest reported for any ferromagnetic material [294] (just a
little higher than in L10 FePd), giving Q ¼ 10. In these samples a clear intrinsic rise
in resistance due to domain walls was detected.

Manganite materials have also been studied. Mathur et al. measured the domain
wall MR in La0.7Ca0.3MnO3 in a cleverly designed bridge structure [295]. This
structure had large numbers of constrictions along each arm of the bridge, formed
where small transverse elements touched at the sides. These elements had small FePt
hard magnets at either end, beside every La0.7Ca0.3MnO3 in two arms of the bridge,
but only alongside every other element in the other two arms. During field reversal
this ensures that these two arms comprise magnetically alternating elements with
a 100 nm wide 1808 wall in every constriction between them. The bridge layout is

Figure 24. MR of a 2mm Fe wire at 65.5K. The extrapolation of the high field MR data
in transverse (dotted line) and longitudinal (solid line) geometry shows that �?ðH ¼ 0Þ ¼
�jjðH ¼ 0Þ, confirming that the system is at the compensation temperature. The resistivity
with walls present, �ðH ¼ 0Þ, is smaller than this extrapolation and indicates that DWs
lower the wire resistivity. The left-hand inset shows this negative DW contribution as a
function of linewidth at this compensation temperature in the longitudinal geometry.
The right-hand inset shows the DW contribution as a function of temperature. After
Rüdiger et al. [284].
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shown in figure 25. (Nagahama, Mibu, and Shinjo employed a similar scheme,
creating walls in a permalloy wire using hard CoSm pads [296], but only AMR
was found.) If the walls offer extra resistance then the bridge will be driven out of
balance, and the number of walls is exactly known. This allows the resistance of an
individual wall to be determined accurately. Additional resistance was observed in a
well-defined field range below 110K, with a wall interface resistance of about
100 f�m2. This was approximately four orders of magnitude larger than might be
anticipated on the basis of a simple interpretation of the double-exchange,
bandwidth narrowing, model usually used to describe the metallic state of these
materials, just as was found by Wu et al. in their unpatterned films [232]. Since
such manganite materials can offer very high spin-polarisations as candidate half-
metals, it is possible that this result could easily be explained through one of the
other models of wall MR that rely on this quantity, such as the spin mistracking
models [182, 183]. Scattering into an almost insulating minority spin band could
generate substantial resistance even if it were to happen at a comparatively slow rate
– in both the semiclassical and quantum models this is reflected in the prediction that
the wall MR will rise very rapidly as P gets large.

Figure 25. Schematic of a thin film Wheatstone bridge device on a SrTiO3 substrate. Black
regions represent a 200 nm continuous La0.7Ca0.3MnO3 film. White regions represent 200 nm
FePt layers. A conventional current of 10mA was fed from I1 to I2, and the output voltage was
measured between V1 and V2. The tracks leading to the device (not shown) were covered in
6070 nm of gold. An in-plane magnetic field H was swept perpendicular to the bridge arms as
indicated. Below TC domain walls are liable to form at the 4mm constrictions in ARM 1 and
ARM 3 of the bridge, but not in ARM 2 and ARM 4. After Mathur et al. [295].
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Wolfman et al.measured La0.7Sr0.3MnO3 films with nanotrenches etched into the
top surface to form vertical nanoconstrictions [297]. The aim of this was to attempt
to geometrically constrain the walls [298] at these points in the films – in fact 38 nm
wide walls were found. Huge wall interface resistances of �10 a�m2 were found,
much higher than that found either by Mathur [295] or Wu [232]. The geometrical
constraining effects were used to account for this, although it is a rise of two or three
orders of magnitude in resistance for a compression of the wall by only a factor of
two or three. This suggests an exponential dependence on the wall thickness, imply-
ing some sort of tunnelling process for the spin-polarised current [177]. A similar
vertical patterning structure, but on a much larger length scale, was used by Shimazu
et al. to study Co films, where a small resistance rise was found when comparing
the MR to that measured on films of uniform thickness [299].

Very narrow nanowires may be made by electrodeposition in track-etched
polymer membranes. Such structures, grown from Co, were studied by Ebels et al.
[90], with the wire diameter being only about 35 nm. They detected an overall
increase in resistance of 0.1–0.3% at 77K when the magnetisation reversed in a
field parallel to the wire axis – assumed to be the nucleation and propagation of
a single domain wall. Scaling this to the wall thickness (15 nm) led to a wall ��=�
of a few hundred per cent. One cannot easily justify such a number on the basis of
models such as that of Levy and Zhang [183]. Ebels et al. proposed that one should
consider the magnetoresistance to arise over a distance ‘sf around the wall. This was
based on models of the CPP mode of GMR, where spins will accumulate over that
distance as they enter an oppositely polarised ferromagnetic layer [76], leading to
bulk spin-dependent scattering over that lengthscale. However, it was argued by
Šimánek that most of the spin accumulation is suppressed by the spin tracking the
rotating magnetisation rather well, as the system is not far from being adiabatic [199]
– the mistracking of spins in Co with a Larmor wavelength of only a few Å is
unlikely to be very great when the wall thickness is 150 Å. Ni wires were compared
with Co by same group, the effect in Ni was found to be one order of magnitude
smaller [300]. It seems that the true explanation of these experimental results is still
somewhat obscure. Co and Ni nanowires were also grown by this technique and
studied by the Lausanne group [301]. In this case the Ni magnetisation was found to
reverse by a curling mode, and the MR showed only AMR. The Co reversal mode
was more complex, involving wall motion, but again no intrinsic MR signal arising
from the wall could be detected, only AMR was found. (Similar measurements of
individual Co nanowires were made by Vila et al. [276].) Walls of controlled size were
formed in Co wires by growing them on a GdCo1.6 substrate to create an exchange
spring structure [302], a similar technique to that employed in the multilayers [243,
245] discussed above in section 4.3.2. This structure gives just the same sort of
domain wall parallel to the interface, which these authors call a Zeeman domain
wall, the thickness of which can be controlled by varying the applied field – in this
paper the range studied was from 10 down to 5 nm thickness. A small excess
resistance was found that increased up to almost 0.1 � for a 5 nm thick wall. This
value is close to what would be predicted by the Valet–Fert model [76] for an abrupt
interface in Co.

Xu et al. fabricated some microscale crosses from permalloy, which
were contacted for both longitudinal and transverse MR as well as Hall
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measurements [303]. The magnetisation of the central portion of the cross was shown
– by MFM and micromagnetic modelling – to switch as a separate domain from the
four arms. Measurements of the longitudinal MR showed an effect only about one-
third of what would be anticipated for the AMR based on a finite element model
with the AMR magnitude extracted from previous transverse MR measurements
[304]. Here the AMR reduces the resistance of the device, so that a contribution
of the domain walls that increased resistance could account for the discrepancy. The
magnitude of the effect, around 0.01%, was confirmed in a similar experiment by Yu
et al., using partially disconnected cross structures [305]. A cross-shaped junction in
another similar experiment showed only AMR, however [259] (as was found in NiFe
wires several years previously [306]).

A clever device structure fabricated from an epitaxial L10 FePd film was used to
detect and count individual domain walls, by Danneau et al. [53], made possible by
the comparatively large DW resistance in this material [113, 184, 237]. A L-shaped
wire was fabricated with the legs running parallel and perpendicular to the stripe
domains created during sample growth, which lie along a preferred direction.
Various voltage probes were formed as part of the patterned device, spaced
600 nm – roughly 8 domain walls – apart. Discrete jumps in the resistance were
observed during the application of a field as the walls move (figure 26), with the
additional resistance generated by a single wall at low temperatures corresponding to
an extra interface resistance of 0.08 f�m2 in the CPW geometry, corresponding to an

Figure 26. Variation of resistance and Hall effect during the first magnetisation sweep for the
CPW configuration shown in the inset MFM picture for a FePd nanodevice. The excess
resistance from the saturation value is due to domain walls. The steps are indicative of
individual domain wall disappearance during the reversal process. The Hall resistance varies
only during the low field single jumps, indicating that the magnetization saturates first in the
contacts. After Danneau et al. [53].
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MR within the wall of about 10%. In this experiment, as well as clearly demonstrat-
ing the positive domain wall MR in this material, and the difference in the CIW and

CPW geometries, detection of the annihilation of an individual wall, containing only
about 5� 106 spins, was easily demonstrated.

A novel scanning probe experiment was recently carried out by Meckenstock,

Rastei, and Bucher, where MR and local thermally modulated FMR experiments

were performed simultaneously on part of a Ni wire that was electrochemically

etched to be 600 nm diameter [307]. The Pt wire AFM tip was used as one of

a pair of voltage probes so that position-dependent MR curves may be measured

at different points along the wire, as a function of distance from the point where the

wire necks down from its full diameter. This allowed the switching of the wide part

of the wire and the propagation of the resulting wall to be detected simultaneously.
Remarkably, it is only very recently that attempts have been made to study

DWR in ferromagnetic semiconductors. A negative intrinsic effect was found in
(Ga,Mn)As devices by Tang et al. [308] using a special multicontact Hall bar-type
experimental geometry [309]. This was accompanied by a painstaking multistage
lithography process to align the Hall bar with the in-plane [110] crystallographic

axes of the wafer to better than � 0:038 that suppresses AMR contributions, which
can be large in these materials. The as-measured negative effect was rather small, as
a single wall occupied only a tiny volume fraction of the whole device, which was

some tens of microns wide and hundreds long. Amazingly, the wall, taken to be
�10 nm thick, was found to have a total loss of resistivity to within the error bar of
the measurement for a 30 mm wide channel, and a 60� 40% drop in resistivity when
the channel is 60 mm wide (figure 27). The detailed mechanism for this truly remark-

able effect is not yet known, but it is speculated that the quantum correction
phase-breaking model of Tatara and Fukuyama [272] can describe this physics.

4.4. Huge domain wall MR in nanoconstrictions?

A question that is currently taxing researchers is that of the proper description of
the electrons traversing a domain wall in a ballistic fashion, and in particular the

Figure 27. Time-resolved magnetoresistance measured across a single DW in a GaMnAs
microstructure at 4.2K. When the DW is completely resident between the voltage probes, the
difference between measured longitudinal resistance, hRðtÞi (violet), and a simple model
describing the predominant, eddy-like part of domain-induced magnetoresistance R0

ðtÞ
(dashed grey) allows differentiation of the intrinsic DW resistance, which is in fact negative.
After Tang et al. [308].
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unambiguous experimental observation of such an effect. Whilst the phenomenon of
a diffusive DWR has been established beyond reasonable doubt, that of a ballistic
effect is far more problematic to establish. This is mainly due to the extreme difficulty
of characterising the nanoscale devices that are required – since most magnets are
metals, the Fermi wavelength �F is typically only �1 Å, and the devices must hence
consist of a few atoms to be of the appropriate size. Moreover, magnetic metals are
not free electron-like, and so the mean free path ‘ is at best only tens of Å. This
means that to form a truly ballistic contact the device must be of atomic scale. Such
devices are experimentally difficult to deal with in several ways: firstly they are hard
to fabricate in a reproducible manner; they are almost impossible to characterise
properly, either structurally or magnetically; and finally they are unstable with time-
varying properties and rather short lifetimes, at best a few hours. In spite of the lack
of consensus amongst researchers, the phenomenon has acquired its own acronym,
BMR (ballistic magnetoresistance), and even its own classification code under the
2003 Physics and Astronomy Classification Scheme: 75.47.Jn. In the light of
the continuing controversy in this area, it seems that an historical account of this
subfield will perhaps be the most balanced.

It is rather difficult to define exactly what is meant by ballistic in this instance.
The conventional definition of a ballistic device is one where the dimensions are
smaller than the mean free path, so that it is band structure and geometrical effects,
rather than scattering, that determine the conductance. The simplest definition for
the ballistic traversal of a wall might then be that the electrons traverse the wall
without scattering, so one condition might be D� ‘. However, the mean free path
does not explicitly enter the formulae for the diffusive DWMR, given e.g. in [182]
and [183]. The electrons here may still have a chance for their spins to relax as the
wall is crossed, the condition to prevent this is that D� �hhvF=J. More extreme is the
Cabrera–Falicov limit, where the wall is thin enough to reflect an electron wavefunc-
tion, here the condition is D� 2p=kF [177]. In all of these cases the requirement is
that the wall is thinner than some relevant length scale, which will be only under
special circumstances.

4.4.1. First results. Nevertheless there has been a substantial research effort into
magnetic nanocontacts on the past few years. This effort was started with the claim
by Garcı́a et al. of the observation of a MR of 200% in a mechanically formed point
contact made by touching together two Ni wires [310]. The effect was observed at
room temperature and fields of only a few Oe were required to switch between the
two resistance states. The effect was only seen for contacts with a conductance of a
few times the quantum unit of conductance G0 ¼ 2e2=h, implying that the contact
area is little more than a few atoms. An example of the data is shown in figure 28.
This tantalising result spurred a large number of other groups to look at this effect.
The effect was interpreted as the trapping of a domain wall in the nanocontact at
low fields, leading to modification of the transmission coefficients of the various
spin-polarised channels conducting the carriers through the constriction. No effect
was observed when one, or both, Ni wires were replaced with Cu.

Theoretical support for this idea is to be found in the concept of a geometrically
confined domain wall, introduced shortly afterwards by Patrick Bruno [298]. Bruno
pointed out that in a constriction the usual p

ffiffiffiffiffiffiffiffiffiffi
A=K
p

formulation (equation 24) for
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the domain wall width D is no longer valid. The key insight was that the variable
geometry of the constriction means that higher energy densities can be tolerated by
the system if they are confined to smaller volumes. For any constriction where the
size is growing faster than linearly with distance as one moves out into the bulk
material this will be satisfied, and a domain wall trapped in the constriction will be
squeezed to be much thinner than it would in the bulk material – although the
exchange energy density in the constriction is growing, the overall exchange energy
cost is shrinking as the wall occupies a smaller and smaller volume as it shrinks into
the contact. The result is that D is of the order of the diameter of the constriction,
regardless of the material parameters. A calculated result showing this substantial
compression of the wall thickness is shown in figure 29. Hence for a contact only a
few atoms across, the thickness of a domain wall trapped there will also be of atomic
dimensions, and hence a good candidate for observing ballistic effects. This geome-
trical confinement has been observed by Miyake et al. in a NiFe system patterned by

Figure 28. Measurements of Ni–Ni nanoconstrictions. (a) Two nickel wires of millimeter
radius are used to form a nanoconstriction. (b) Dependence of magnetoresistance on the
conductance of the contact: the applied magnetic fields ranges from 20 to 120Oe. The smaller
the conductance, the larger the magnetoresistance that is found. After Garcı́a et al. [310].
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electron beam lithography, but the MR measured for the contact was no higher than

would be anticipated on the basis of the AMR [311]. The geometrical confinement

effect has also been observed in scanning electron microscope with polarisation

analysis (SEMPA) studies [312, 313]. Although not directly observed, the prospect

for ultra-thin walls in nanocontacts is not implausible – walls of atomic dimensions

have been observed by spin-polarised STM by Pratzer et al. [116] and by Ding

et al. [115] under appropriate conditions. Proper theoretical modelling of such

walls cannot proceed using the usual micromagnetic approach, as the continuum

approximation made in this theory is not valid at these atomic lengthscales. There is

also a theoretical calculation, by Tatara and Tokura, of the electronic pressure on

a wall in metallic magnets that can reduce the wall energy below the magnetostatic

value, equation (25), for thin walls if the exchange energy splitting is smaller than

some critical value relative to the Fermi level [314]. Although they are able to show

that this condition is not satisfied in bulk Ni, they speculate that it might play a role

in a nanocontact where exchange interactions will be weaker due to the reduced

co-ordination number of atoms in the contact.
Very rapidly a theory was developed to explain this very large MR and the

scaling with G in nanocontacts [315]. Using a simple, one-dimensional

Hamiltonian and either the Mori or Landauer formula a simple expression for the

magnetoconductance �G=G was found in terms only of the Fermi wavevectors

kF" and kF# and the domain wall thickness D. This was given as

�G

G
¼

p2

8

P2

1� P2

1

cosh2 pkFD
þ

1

cosh2 pkFPD

� 	
, ð48Þ

where the polarisation P is defined in terms of the spin-resolved Fermi wavevectors,

as in the Stearns tunnelling model, equation (3), and kF ¼ ðkF" þ kF#Þ=2, the

Figure 29. Magnetisation profile of a geometrically constrained magnetic wall calculated for
a wire with a rectangular notch where the width is one-tenth that of the main magnetic wire
and the length is one-tenth of w0 ¼ p

ffiffiffiffiffiffiffiffiffiffi
A=K
p

(solid line), as compared with to the unconstrained
Bloch wall with the same w0 (dashed line). The compression of the wall thickness is easily
visible. After Bruno [298].
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spin-averaged Fermi wavevector. The similarity of the central term, P2=ð1� P2
Þ, to

the Julliere tunnelling formula (equation 5) underlines the similarity of the physics in
this model to the tunnelling process between the two magnetic electrodes.

As in the Cabrera-Falicov theory, once kF�D0 1 then adiabatic relaxation of the
spin dominates and the simple ballistic effect described here no longer applies. The
dependence on contact size, and hence on G, arises as a result of a summation over
the number of available conduction channels, dominated by the greater number of
d electrons as s-like and d-like electrons are treated on an equal footing. A reasonable
fit to rather scattered �G=G versus G experimental data for Ni and Co nanocontacts
was obtained with values for the band structure parameters of these materials that
are not too far from the bulk ones. A further experimental study comparing contacts
formed from Ni, Co, and Fe [316], found that Fe contacts showed BMR values
of about an order of magnitude smaller than for the other two metals, interpreted
within the theory as being due to the much smaller polarization of the d-like
electrons in Fe corresponding to its status as the only weak ferromagnet of the
three 3d elemental ferromagnets. Extending these ideas to a wider variety of materi-
als including alloys, amorphous metals, perovskites and Heusler alloys it is possible
to discern a pattern of sorts. Zhao et al. defined a parameter they call the ballisticity
b ¼ D=‘sf, where ‘sf is called the ‘‘mean free path for spin reversal (ballistic
non-adiabatic limit)’’ [317] and D is the wall thickness. This quantity was estimated
from the variation of conductance with contact size, and as a result contacts
classified as either ballistic (1=b	 1) or non-ballistic (b	 1). Combined with a
large spin-polarisation, this condition determines whether or not BMR will be
observed, the effect being restricted to the elemental 3d ferromagnets and a subset
of contacts where Ni is one electrode. This type of idea was also arises in a theory by
Tatara and Garcı́a, where they calculate the suppression of the MR in a nanocontact
as one crosses from the ballistic to the ‘‘dirty’’ limit [318].

As with TMR, one will anticipate the highest possible MR when half-metallic
(viz. a material where one spin sub-band has a gap at the Fermi level) electrodes are
used. A prospective half-metal with a high Curie point (860K) is magnetite, Fe3O4.
Versluijs and Coey have studied mechanical point contacts between crystals of
magnetite, and found large magnetoresistive effects exceeding 500% [319, 320].
The presence of high MR was again associated with G� G0 and also with non-
Ohmic I–V characteristics. This was the earliest study to specifically discount the
possibility of magnetostriction as a possible cause of the effects. Strains due to
magnetostriction are typically of the order of a few parts per million, therefore a
change in the atomic scale (a few Å) will be observed upon magnetising an object of
�100 mm. Changes of this scale will certainly affect the resistance of atomic scale
contacts where the conductance is of the scale of a few G0, and a nanocontact may
operate simply as a very tiny reed switch. In a simple picture though, there ought to
be no change in the magnetostrictive lengths in a sample when the magnetisation of
the contact is reversed from parallel to antiparallel. The symmetry of the domain
wall MR picture will be different from that of a magnetostrictive ‘‘reed switch’’ MR,
and these were clearly distinguished in this study.

Another half-metal with a high Curie point is CrO2 [21]. Mechanical nanocon-
tacts of Ni–Ni, CrO2–CrO2, and Ni–CrO2 were studied by Chung et al. [321]. The
maximum MR was observed at G ¼ G0 for the Ni–Ni contact, whilst the maximum
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value of MR was observed for contacts with G ¼ 0:05G0 for those involving the
half-metal. This group pointed out that is was possible to scale all their MR data
measured on these contacts, along with their own on magnetite junctions, with the Ni
results of Garcı́a et al. and the magnetite results of Versluijs and Coey (see figure 30).
This was done by normalising to the maximum resistance and by the resistivity of the
contact materials, resulting in what is, again, rather scattered data being compressed
into a limited region of the graph, bounded by the low and high channel number
limits of the theory put forward by Tatara et al. [315] (see figure 31). This ‘‘universal’’
behaviour was taken as a sign that the the mechanism of BMR in all these cases is
the same.

Figure 30. Magnetoresistance hysteresis loop for a magnetite point contact. After Versluijs
et al. [319].

Figure 31. Normalised magnetoconductance as a function of the nanocontact conductance
scaled by the ratio of the material resistivity to the resistivity of Ni. The data labelled ‘‘this
work’’ in the legend is from [321], for both that data and others taken from the literature
(Garcı́a et al. [310, 316, 322]; Versluijs et al. [319].), the conductances are scaled to G0 at the
peak magnetoconductance. The solid and dashed lines are from [315] in the limits of small and
large number of conducting channels, respectively. All the experimental data falls roughly
within this range. After Chung et al. [321].
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Whilst in the original paper the conductance was always much lower when the
domain wall was present, with the wires oppositely magnetised, a full MR loop was
found to display either a positive or a negative effect [323]. These new experiments
were performed on nanocontacts formed by an electrochemical method. The same
contact was reported to show both positive and negative magnetoresistance effects
depending on the sequence of magnetic fields and current pulses applied. The current
pulses were said to modify the local magnetic domain configuration in the electrodes
in the vicinity of the nanocontact region, and various possible domain states were
proposed that could explain the results. The mechanism for this to take place was
suggested to be either a spin-transfer effect (to be dealt with in more detail in this
review in section 5) or a simple interaction with the strong Oersted field produced by
these high current density pulses. This electrochemical technique has been used by
Hua and Chopra to form Ni nanocontacts with claims of magnetoresistance of over
3000% (although the saturated state was the high resistance one) [324], and more
recently over 100000% (again an inverse effect) [325].

4.4.2. Theoretical interpretation. The combination of extremely striking results
with intrinsically difficult to characterise samples gave great scope for theoretical
speculation about the possible underlying mechanisms, and myriad different possible
micromagnetic structures and transport mechanisms were proposed. This group of
theories will be reviewed below.

The Delft group performed micromagnetic calculations of the structure in a
30 nm point contact fabricated through a nanofabricated pinhole in a Si3N4 mem-
brane of the type used for TEM. They made calculations for Co [326] and Permalloy
[327] and used these to estimate AMR and domain wall MR, using the Levy-Zhang
model [183] for the latter term. In the case of NiFe they compared these to experi-
mental data, and found marked discrepancies, failing even to reproduce the sign of
the MR in one of the geometries they consider. It is this measured reduction in
resistance in such a point contact that is likely to have inspired the band bending
model from the same group [194] for inverse domain wall MR that we discussed
above in section 4.2. It is worth noting that these point contacts are much larger than
anything that is supposed to display BMR, and were studied at more or less the same
time as the first results on the Ni nanocontacts were published.

The group of Garcı́a, who first reported on these contacts, published a theore-
tical paper in 2001, describing the motion of a wall in a nanocontact as a field is
applied [328]. The calculation built on the constrained wall theory of Bruno [298],
and predicted that a field will create a finite displacement shift to such a constricted
wall, rather than generating a terminal velocity motion, as for a conventional wall.
In fact this is, of course, the case for any wall trapped in a pinning potential
that experiences a field that is too weak to depin it. (This displacement had been
previously observed by MFM in planar constriction geometry [329], for instance.)

The displacement of a wall in a constriction was also treated by Burton et al. in
a micromagnetic calculation [330] that qualitatively reproduces the result of Garcı́a
et al. [328] showing that wall is compressed to one side of constriction by an applied
field before finally being expelled. However, this group goes on to calculate the
conductance of the wire based on the micromagnetic configuration they find at
each field, using a straightforward ballistic model. They treated a Ni wire between
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Ni contacts, and also a Ni wire between a Ni and a CoPt contact. In both cases

a clear reduction of conductance is found when the electrodes are antiparallel,

although the conductance is not constant in the switching region – it changes as

the wall moves, growing in the Ni–Ni system and shrinking in the Ni–CoPt one. This

is because the wall cannot be easily ejected into the CoPt electrode and is compressed

against it until quite a high field is reached: the narrowing of the wall increases its

resistance, just as predicted in the Cabrera and Falicov model [177, 178] (and in

the Viret [182] and Levy-Zhang [183] ones, although they treated the transport

diffusively).
The detailed structure of the wall in the contact was investigated by Berger,

Labaye, and Coey. Monte Carlo simulations of the magnetisation in nanocontacts

confirm Bruno’s idea of a constrained wall and showed the possibility of thermal

fluctuations in the form of walls in a nanocontact between various different Bloch,

Néel, and vortex states [331]. They estimate the height of the energy barrier separat-

ing these states as equivalent to about 80mK per atom, meaning that structures

smaller than about 10 nm in size will be unstable at room temperature [332]. This

opens a new inelastic scattering mechanism in the contact, which can break phase,

flip spins and otherwise reduce the MR of a contact. Experimental results on the

temperature dependence of BMR are practically non-existent, due to the extreme

fragility and instability of the contacts.
Many of the theories of the conduction in such a nanoconstriction are naturally

expressed in terms of the Landauer picture of conductance, since the enormous

MR effect is only found when the conductance of the junction is of the order of

G0. The Landauer formula gives the conductance G of a device as

G ¼
G0

2

X
i, �

Ti, � , ð49Þ

where G0 ¼ 2e2=h ¼ 1=12906��1 is the quantum of conductance, and Ti is the

transmission coefficient of the ith channel of conduction [333]. The subscript � is

used here to label the spin of the carrier. The value of G0 given here includes a factor

of 2 that accounts for the degeneracy due to spin – in an unpolarised system each

channel can carry two electrons of opposite spin. In this case Ti," ¼ Ti,# and the

formula reduces to G ¼ G0

P
i Ti. In ferromagnetic systems it is necessary to

explicitly take account of the spin, as in equation (49).
It is useful at this point to consider the way the experiments on point contacts

are usually done: this is by forming a very narrow neck in a metal wire, usually

by notching it and then drawing it almost to breaking point. This is then actually

broken by further pulling whilst the conductance is measured – this will of course

drop, and when it approaches a few times G0 tends to show plateaux at various

values with sharp jumps between them as the wire is pulled. Eventually the last atoms

lose contact, the wire breaks, and G drops to zero. The resulting, stepped curve of

conductance with time is often referred to as a conductance staircase. The data are

usually quite noisy, and each time the measurement is made the form of the curve

is somewhat different, so some sort of averaging scheme needs to be employed. The

reason for this is that metals are generally rather ductile, and there are jumps caused

by abrupt atomic rearrangements as the contact is drawn, which will not always
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happen in exactly the same way. The most common scheme is to take all of the
values of conductance acquired and plot a histogram of them. Values that appear
often, such as those on the flat part of a plateau, will show up as a peak in
the histogram. Peaks appearing at multiples of G0 are usually taken as evidence
for conductance quantisation in the sub-nm metal wire. (Example histograms
for Ni nanocontacts are shown in figure 34, showing the change from G0 to G0=2
conductance under the influence of an applied field.) The field of atomic
sized conductors was recently reviewed at length by Agraı̈t, Yeyati, and van
Ruitenbeek [334].

Imamura et al. adopted a recursion transfer matrix approach to calculations of
the channels and transmission coefficients in such a ferromagnetic point contact,
containing an atomically abrupt domain wall [335, 336]. They adopted an atomistic
view of the exchange interactions and found that as a result there was no spin
precession and the process was certainly not adiabatic. Several interesting new effects
were found, as compared to an ordinary, spin-degenerate point contact. Since kF is
spin dependent, for certain contact sizes channels exist for one spin but not the other,
giving rise to much more complex conductance staircases (plots of G as a function of
contact diameter, with each step corresponding to the opening of another conduc-
tion channel), including plateaux at half-integer multiples of G0, a hallmark of the
lifting of spin-degeneracy. (Similar results were found by Zvezdin and Popkov [337].)
Calculations of these conductance staircases for parallel and antiparallel alignment
of the magnetisation on either side of the contact allowed the MR ratio to be found,
which oscillated with contact size. Each peak in the oscillation got larger as the
contact shrinks in size, with the highest being when only a single channel is open
for the parallel conductance case, but neither spin state was found to be very trans-
missive. These peaks got larger as the exchange splitting grows stronger. MR ratios
of 1800% were predicted at this point for the largest exchange splitting considered,
0.7 eV.

Similar calculations of conductance staircases were performed by Nakanishi and
Nakamura for ballistic ferromagnetic nanowires [338]. The Landauer transmission
coefficients were here obtained using a perturbational approach, allowing more
realistic pinning potentials to be used than in the previous paper, as well as treating
the possibility of spin-flip scatter through an additional term in the Hamiltonian.
Similar overall results were found though, with conductance staircases containing
e2=h as well as 2e2=h steps in the ferromagnetic case, due to the channels opening
for different diameter for different carrier spins. The main new feature found was
the rounding off of the steps in the staircase for the wire containing a wall due to the
spin-flip scattering induced by the transverse component of the magnetisation in
the wall.

Tagirov et al. calculated MR using a semiclassical theory and determined the
crossover from diffusive to ballistic regime [339]. The geometry they used was that of
an orifice in an insulating membrane. They calculated in the limit that the thickness
of the wall D is much less than the distance travelled by a conduction electron in the
Overhauser longitudinal spin relaxation time [340], ds ¼ vFT1, essentially the non-
adiabatic limit. In the ballistic limit, (a� ‘") MR ratios of up to around 1000%
were found for realistic values of spin-polarisation, represented in this theory by the
ratio vF#=vF" � 0:5. In the diffusive case however very large MR ratios were also
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predicted, of the order of 450% for the same polarisation – such large values have
not been observed experimentally, it was claimed that this is because as the orifice
size grows the condition D� vFT1 is no longer satisfied, since the wall thickness will
expand.

In a follow-up paper they discussed the variations in MR observed based on the
possibility of the number of quantum channels open for conduction [341, 342]. The
essential story, as far as the half-integer G0 steps in the staircase and quantised spin-
channels goes, was the same as in the papers discussed above. A novel feature of the
discussion was that of addressing the variability in experimental results. For a given
saturated conductance GP it is possible to have a variety of different conductances in
the antiparallel state GAP, when the contact contains a domain wall, depending on the
different degrees of spin-flipping introduced by the wall, and more importantly, the
fact that certain conduction channels may or may not be open in this state – they open
at different contact diameters to those for the parallel case. The first available channel
for conduction in the AP state opens when the P state conductance is 2G0, and hence
contacts with this conductance may be expected to show an MR ratio anywhere
between a few tens of per cent (depending on spin polarisation) up to infinity.
Higher conductances also showed considerable variation: see figure 32. The impor-
tant point was that even in a theoretically perfect case, a plot of MR against GP will
not show a clear correlation, other than a rapidly falling downward trend.

It is interesting to ask why it is that in the case of a nanocontact one can predict
a huge MR, but in the case of a extended wall the MR never exceeds that predicted
by the Julliere formula, or a modified variant thereof, where for reasonable values of
spin-polarisation, the MR does not exceed a few tens of per cent. The answer lies
in the fact that for a laterally extended system, be it domain wall, tunnel barrier, or

Figure 32. The dependence of conductance (a), and magnetoresistance (b) on the radius of
a connecting orifice. Panels (c) and (d) show dependences of the magnetoresistance on the
number of the open conductance channels for the F alignment of the magnetisations: (c) for
a sloping linear transition in potential between the sides of the contact, and (d) for a step-like
potential. pF" ¼ 1:0 Å�1 is the spin-up Fermi momentum, � ¼ pF#=pF" ¼ 0:55, and � ¼ 10
is the dimensionless length of the contact in Fermi wavelengths. After Tagirov et al. [341].
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interface, all available channels for conduction are open: that is every value of kjj
less than kF in the 2D Brillouin zone can contribute to the conduction. In the
nanocontact case this does not apply and only a very small number of channels
are open – perhaps only one. It is the polarisation of these few states that is
important, rather than the average over all of the 2D zone. Since there are few states,
there is good chance that the spin polarisation of these happens to be quite
high. There is an analogy with the spin filtering carried out by the crystalline
MgO barrier in epitaxial junctions [39, 40], where only certain states are permitted
to transmit – which happen to have a very high polarisation.

Dugaev et al. carried out calculations of reflections of electrons from a narrow
wall in a quantum wire [200] in the abrupt limit defined by Cabrera and Falicov:
kFD� 1 [177, 178]. They restricted themselves to the case of a single open channel,
and found an MR of roughly the same magnitude as would be obtained using a
Julliere tunnelling formula. They also calculated the spin-currents through the wall
and the equilibrium spin perturbation found near the wall, which has an oscillatory
form like a Friedel oscillation, indicating that such an abrupt wall perturbs the
electron gas in the same way that a magnetic impurity would. This effect was in
addition to any spin accumulation caused by the current flowing through the wall.

More recently several new theories that deal with materials specific aspects of the
problem have been described in the literature. One of the first of these considers the
issue of oxidation of such a tiny contact [343] – a few atoms of Ni are not expected
to remain chemically pure under ambient conditions in air. This can give rise to
conduction through spin-polarised oxygen p states, treated using the Kubo formula
to calculate the conductance between two semi-infinite Ni leads each coated with
an adlayer of O atoms. Each O atom was found to develop a rather large magnetic
moment of 1.4�B, meaning that the conducting states are highly spin-polarised.
Magnetoconductance ratios of hundreds of per cent were found for this structure.
Similar adlayers of Cl, S, or C were found not to polarise and no MR was found.

The role of oxidation in electroplated Ni devices was also discussed by Yi in the
following year [344]. As well as the oxidation of surfaces, grain boundaries can be
oxidised, and Yi proposed that in the contact there is a short chain of Ni grains each
coated entirely in NiO. This can form a multiple barrier sequential tunnelling
structure, which may or may not operate in the Coulomb blockade regime depending
on the smallest particle size. (For really tiny particles, smaller than the Fermi
wavelength, it is proposed that these may act as quantum dots, although such a
small object can comprise only a few atoms. It is difficult to see how such such an
object can be defined separately to the oxide that surrounds it.) Qualitative argu-
ments are given without calculation that the presence of oxide is necessary to observe
a substantial MR through any of these mechanisms. The experiments of Yang et al.
[345], described below, indicate that the presence of oxide is essential to obtaining
large BMR effects in electrodeposited nanojunctions.

Ab initio calculations by the Halle group have treated atomic chains of various
elements between semi-infinite Co [346] and Cu electrodes [347]. In the first case, Co,
Cu, Al, and Si chains of atoms were treated, and local atomic moments and
conductance calculated for P and AP magnetic configurations of the leads. The
highest MR values were actually found for Al (49%) and Si (50%) in a straight
chain, whilst Co was the highest (38%) for a crooked, zigzag chain (structures are
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shown in figure 33). This was spite of the fact that induced moments on the Al and Si
were always rather small. What is notable about these results was that in no case
does a rotating domain wall form: in the AP state the moment on the central atom is
always identically zero. The rotating moments reduced the exchange splitting to
nothing in these nanostructures, in an extreme version of the idea first put forward
by van Gorkom et al. [194], although the system was restricted to collinear magnetic
states, meaning that this might well be artificially introduced. Co, Pd, and Rh wires
were then considered in the case of Cu contacts. The focus of this second paper was
to determine the magnetic properties of the atomic chains, and transport properties
were not calculated. Nevertheless, it was found that all three systems are magnetic as
the wire is stretched to almost breaking point. This has some bearing on the results
of Rodrigues discussed next [348]. First principles calculation of the relaxation of
the positions of Ni atoms within a nanocontact have shown that this process can
substantially reduce both the local moment on and conduction through the central
atom in such a contact [349]. This result underlines the need for very
careful characterisation of such experimental contacts before detailed theoretical
calculations can be applied.

This effect was neglected in the calculation of Velev and Butler for these very
reasons, and instead attention was focussed on the issues: wall thickness and contact
width [350]. Again the conductance was calculated from the Landauer formula, with
the transmission coefficients obtained for different kjj using the Caroli formula. It is
important to note that in this formalism the non-collinear nature of the magnetisa-
tion can be treated. Results were calculated for Fe, Co, and Ni systems. The main
result is that a very small contact is needed to obtain a large MR. In this limit, the
MR for Fe is much smaller than that for Co or Ni, as found experimentally [316].
The paper closed with an examination of the effects of forming contacts with non-
magnetic atoms attached to magnetic leads using the classic GMR materials systems
of Co/Cu/Co and Fe/Cr/Fe: only the former showed a substantial MR.

The issue of finite voltage bias across such a contact was examined by Rocha and
Sanvito [351], in order to interpret experimental claims of highly asymmetric I–V

Figure 33. Geometry of the nanocontacts considered by Bagrets et al.: (a) linear
configuration; (b) zigzag-like configuration. After Bagrets et al. [346].
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characteristics, which can be somewhat diode-like in appearance in the high-
resistance, low field state [352]. A Keldysh non-equilibrium formalism was used to
calculate the energy (bias)-dependent transmission coefficients. The key to this was
the asymmetry of the structure in the contact: at high field where there is no wall
the magnetic state is entirely symmetric – this is also true if the wall, once created, is
positioned exactly in the centre of the contact. If it is shifted from this position
though, either by a structural asymmetry or by a field [328–330], then the I–V
characteristic will reflect this asymmetry. It is worth noting that most theories and
experiments have not closely examined the issue of finite bias in these contacts.

The question of the size of the steps in the conductance staircase was addressed
by Smogunov et al. using ultrasoft pseudopotentials [353]. It was claimed that these
are a superior means of treating d-like electrons, which are critical in ferromagnetism
and are the underlying cause of transition metal point contacts often showing non-
integer multiples of G0 in their conductance staircases. (As opposed to noble or alkali
metals, where the highly transmitted s electrons mean that the overall conductance is
often close to an integer multiple of G0: various different classes of metals are
compared in [354].) The band structure of Co was calculated in [353], building on
previous studies of Ni [355, 356]. These results led to calculations of the transmission
coefficients for atomic chains of Ni and Co atoms. It was found that many of the
electrons with d-like symmetry are blocked when the chain contains a domain wall,
generating large MRs, with slightly better transmission for Ni than for Co due to the
greater exchange splitting in that metal. (Similar findings for Ni were published in
[357].) Fractional values of G0 were not found though, and the suggestion was made
that these could be due instead to fluctuations, either of the magnetic structure [332]
or of the positions of the atoms themselves.

A very recently published ab initio calculation by Jacob, Fernández-Rossier, and
Palacios comments on orbital motion of electrons in Ni nanocontacts [358].
Electronic structures were calculated using density functional theory in the local
spin density approximation, allowing a proper treatment of the details both the
band structure and physical structure without (over)simplifications. The simulated
contact was in the single atom limit, on the last plateau of conductance before the
contact breaks. The MR due to a domain wall in such a structure is found to be no
larger than a few tens of per cent. These authors conclude that a DW effect cannot
explain the very large MRs reported by experimental groups, and suggest that these
are due either to magnetostriction or adsorbed gas atoms.

The lack of consensus regarding the origin of the BMR is reflected in the more
recent experimental results investigating this phenomenon, which are reviewed in the
following section.

4.4.3 Experimental exploration. Aside from the initial measurements of BMR dis-
cussed in section 4.4.1 above, there was parallel interest at the some time on the
quantisation of conductance quantisation in ferromagnetic systems. Ludolph and
van Ruitenbeek had measured atomic contacts of various different metals fabricated
using a mechanical break junction [354], primarily to study the relationship between
fluctuations in the conductance and the conductance itself. An important side issue
in their paper, from the point of view of this review, is that free electron-like metals,
e.g. Cu, Ag, Au, and especially Na, tend to have conductance plateaux at integer
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multiples of G0 ¼ 2e2=h. This does not hold so well for less free electron-like systems
such as trivalent metals, exemplified by Al, and the transition metals. Nb and Fe
were studied, and were found to be almost indistinguishable. The ferromagnetism of
Fe does not seem to affect the results; however, the histogram does appear different
to one collected by Ott et al. [359] at magnetic saturation, although the temperature
is also different (room temperature in this latter case, as opposed to 4.2K).

Ni nanocontacts have been studied by a number of groups previously [360–364].
In one of the more recent experiments, the changes in the conductance steps with
temperature, above and below the Curie point, and applied field were studied [365].
A strong peak in the conductance histogram at G0 was observed below TC that was
completely suppressed in a measurement above this temperature. A deep dip in the
histogram between � G0=2 and G0 was found at all temperatures upon application
of a 1200Oe field. This was the first systematic investigation of the effects of the
sample environment on the conductance of a quantum point contact formed from a
ferromagnetic metal.

A much more pronounced effect was found by Ono et al. who measured
conductance histograms for Ni contacts at several different fields [366]. Very
well-defined peaks in conductance were observed at multiples of G0 at low fields,
whilst extra peaks at half-integer multiples of G0 were observed above a field of 67Oe
applied along the wire axis (see figure 34) – the lifting of a spin degeneracy by a
ferromagnetic state would give rise to just such an observation: switching to G0=2
conductance steps was observed in more traditional quantum point contacts formed
in 2D electron gases under high field [367, 368]. No such change in conductance was
observed for a control Cu contact. Measuring of the magnetisation loop of the Ni
wire showed that the hysteresis loop closed up above fields of �60Oe, indicating that
the sample is in a single domain state for fields higher than this value. This paper
concludes with the idea that a very large MR might be found in such a contact under
certain conditions, just as the first paper of the Garcı́a group was precipitating the
BMR landrush of the next few years.

Further measurements in a perpendicular field showed that the switch from 2e2=h
to e2=h conductance steps took place at roughly the demagnetising field of the Ni
wire, 3.1 kOe [369]. Theory examining this point in more detail is to be found in
[338]. A shift of these conductance values to 1:4G0 and 0:7G0 at bias voltages higher
than about 240mV, reflecting the non-linear I–V characteristic of these junctions has
been measured [370]. Electrodeposited Ni nanowires showing some degree of G0=2
conductance quantisation at zero field were fabricated by the Piraux group [371].

There have been other experiments detecting conductance quantisation at values
of G0=2 in ferromagnetic contacts. Komori and Nakatsuji measured the conductance
of Fe nanocontacts in a UHV STM apparatus at 4.2K [372, 373]. The contacts were
prepared by gently touching a Pt-Ir STM tip to a pure Fe film evaporated in a
connected UHV chamber until a conductance of about 5G0 was obtained. The tip
was then drawn back until contact with the film was severed. Reproducible results
were obtained after a few extend/retract cycles of the tip, interpreted as indicating
that the tip is then coated with Fe atoms and that the contact is made purely from
that element. Conductance steps of size G0=2 were observed, although the plateaux
did not occur at integer multiples of this value. There was also an attempt to measure
the MR of this contact: a clear switching between two conductance levels differing by
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about G0=2 was observed for a contact stabilised near a step, and more complex
hysteretic traces were found for contacts stabilised on plateaux. As the authors warn
though, a sound knowledge of the magnetostrictive properties of the contact is
needed before such data can be interpreted quantitatively. There have also been
10 nm point contacts fabricated to magnetite layers covered with a thin alumina
tunnel barrier with tunnelling atomic force microscopy [374], and some field
dependence to the conductance was found, although this aspect of the experiment
was not reported in great depth.

A common criticism levelled at these types of experiments on atomic wires is that
such structures are extremely hard to characterise: Rodrigues et al. overcame
this problem by forming nanowires inside a high-resolution transmission electron

Figure 34. Conductance histograms for Ni without magnetic field (a) and with the magnetic
field of 10 (b), 33 (c), 50 (d), 67 (e), and 100Oe (f ). Each histogram is constructed from 20
conductance staircase curves. Conductance quantisation in steps of G0=2 seems to take place
for fields of 67Oe and higher, a possible indication that the spin degeneracy of the conducting
channel has been lifted. After Ono et al. [366].
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microscope (TEM) and imaging them in real time during measurement [348]. They
examined wires formed from Co, Pd, and Pt, the TEM images of these structures are
shown in figure 35. The samples were kept clean by depositing them as thin films
covered in C capping layers, subsequently burned off by high intensity electron
irradiation inside the TEM. Measurement of the conductance histograms showed
peaks at G0=2 in Co, Pd, and Pt atomic chains, although it was rather weak in the
last case. This was taken as evidence of ferromagnetic ordering in these nanostruc-
tures, although the fact that these are transition metals may also play a role, as we
shall see below.

Yang et al. fabricated junctions electrochemically and measured them in situ
without exposure to air during the electroplating process [345]. Although e2=h con-
ductance steps were observed, indicating the absence of spin degeneracy in these
structures, no large MR was observed for junctions of any conductance. This experi-
ment tends to indicate that oxidation must play a vital role in whatever mechanism

Figure 35. HRTEM atomic resolved images showing the formation of suspended chains of
atoms just before the contact rupture. (a) Co. (b) Pd. (c) Pt. These are possibly the only images
showing the exact atomic arrangements in a ferromagnetic nanocontact extant to date. After
Rodrigues et al. [348].
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leads to large effects. (This idea was put forward by Garcı́a in a short unpublished
note at about the same time [375].) The role of gas adsorbates was also investigated
by Untiedt et al. [376]. Atomic contacts of Fe, Co, Ni, and Pt were formed under a
cryogenic vacuum at 4.2K from high purity metals. No conductance peaks were
found for any of these metals except at integer values of G0, with no indication of
the lifting of spin degeneracy. The most fascinating part of this experiment was
what happened when gases were introduced into the sample space – this group
had previously demonstrated that H2 molecules can conduct when they are stretched
between Au electrodes just after the metallic link has broken, and an adsorbed
molecule moves to fill in the gap [377]. The adsorption of CO molecules onto the
Pt electrodes showed a shift in the positions of conductance peaks to half-integer
multiples of G0, exactly the same observation that is often taken for a lifting of spin
degeneracy. This group of authors claim that only when conduction is controlled by
a single s character (viz. highly transmitting) channel can definitive experiments to
detect the lifting of spin degeneracy be carried out. The work of Suderow et al.,
where a contact was formed between a gold STM tip and a gold layer evaporated
on top of the half-metallic ferromagnetic manganite La2/3Sr1/3MnO3 falls into this
class. The conductance histogram showed the typical peak corresponding to the last
gold contact before rupture at a value smaller than the quantum of conductance,
indicating that the current through the single atom contact was partially
spin-polarised [378].

If BMR is ever to be employed in a real device structure it will need to be
implemented in some kind of planar technology. Scholz et al. have designed pinning
traps for walls in such structures by micromagnetic modelling [379]. There have been
several recent attempts to fabricate planar versions of the nanocontacts – some have
already been mentioned, e.g. [352]. This approach has met with mixed success. In
general the formation of atomic scale structures using conventional lithography is all
but impossible, even with the highest resolution electron and focussed ion beam tools
available today. Florez et al. have formed junctions of NiFe down to sizes of about
15 nm, which were shown to trap domain walls using MFM [380]. Drops in resis-
tance, when scaled to the size of the wall, indicated that the presence of a wall in a
contact actually increased conductance by a few per cent in these devices, although
they claim that one single device showed a drop in conductance of the same order of
magnitude.

To address some of the criticisms of their earlier work, Garcı́a et al. formed
pseudo-planar devices, showing some very large effects initially, but these soon
vanish after field cycling [381]. The initial effects were of similar size for both Ni
and NiFe contacts – the effect of magnetostriction should be much reduced in the
latter if good quality permalloy is formed.

Lepadatu and Xu observed a drop in resistance of permalloy and Ni nanocon-
tacts (down to �50 nm across) with increasing current that they ascribe to the
removal of a domain wall by current-induced wall motion – current densities of
1011 A/m2 were required to cause the resistance drop [382, 383]. The largest drop
observed was of the order of 0.1% – equivalent to 3% MR in the wall after correc-
tion for the current distribution and domain dilution in the device, substantially
larger than the AMR. The authors do not say whether the effect is reversible
upon field cycling, as would be expected for a magnetic domain wall mechanism.
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On the other hand several sets of well-controlled junction devices have not found

any large MR effects. Stable Co constrictions of nm scale in two different geometries
(examples are shown in figure 36) only show effects of the scale that might be
anticipated from AMR, all below 1% [384] in spite of a diligent search. Very

carefully fabricated contacts, made by much the same method as in [327], using a
nanohole in a membrane, were fabricated by Ozatay et al. [385], who formed Ni–Ni
contacts with one side exchange biased using FeMn. No effect larger than a fraction
of a per cent was found (figure 37), although point contact spectroscopy revealed

that the conduction was at least partly ballistic. Contact diameters, estimated from
the junction resistances using the Sharvin formula, were as small as 3 nm.

Egelhoff et al. have carried out a wide-ranging and careful series of experiments
on variety of different nanocontact geometries, but found that whenever a large MR

was observed it was caused by the presence of experimental artifacts [386]. Various
different popular geometries often used for BMR measurements using free-standing
wires – sometimes glued to a substrate – were considered, and shown to be suscep-

tible to the generation of various different artifacts involving magnetostrictive or
magnetostatic forces making and breaking the contact. Thin film Ni samples
were found to often detach from thermal oxide substrates in contact regions, then
becoming liable to display the same artifacts as free wires. Care is also needed when

preparing electrodeposited contacts, as it is possible to generate magnetic nanopar-
ticles in the contact region that can then move under the application of a field and
cause large resistance changes [387, 388]. These particles could be transferred to

unplated contacts and similar, BMR-like effects, found. This group went on to
construct an extremely well-controlled electrodeposition environment where the
contact can be stabilised and maintained at a very well-defined resistance, and

Figure 36. Scanning electron micrograph of three typical nanoconstrictions with different
widths on a Co film on Si. The width decreases from 130 nm on the right to 45 nm on the left.
Although junctions with G � G0 were obtained, none of these structures showed MR in excess
of 1 %. After Montero et al. [384].
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Figure 37. (a) Room-temperature SQUID magnetometry measurement of M vs H for a
Ni–Ni nanofabricated point contact device. The thick and thin horizontal arrows represent
the magnetisation directions of the free and pinned layers, respectively. There are two inde-
pendent hysteresis loops for the free and fixed layers. (b) Room temperature magnetoresis-
tance scan for a Ni–Ni nanocontact. (c) Magnetoresistance as a function of device resistance:
solid circles are the data for Ni–Ni point contacts. The dashed line is a linear fit to the data. In
the ballistic transport regime, a 100 � device is expected to have a minimum contact diameter
of �3 nm. After Ozatay et al. [385].
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MR measurements made in situ [389]. No BMR of any magnitude was detected for
Ni contacts in any field orientation – just as was reported by Yang et al. in [345].

There are claims of modest success in the fabrication of planar junctions, though.
There is an unpublished report by Mukherjee et al. where a 20% effect in a FIB cut
40� 10� 10 nm3 Ni80Fe20 junction is claimed [390], and atomic scale modelling of
the magnetic configuration of such a structure is described [391]. A report of an MR
of 18% in a similar 35 nm device was published recently [392]. Ni nanocontacts were
prepared by Ohsawa using a combination of FIB patterning followed by ion milling
combined with in situ magnetoresistance measurements [393]. The sample was
observed by TEM after milling. One side of the contact was coated with CoPt to
give a hard-soft spin-valve-like action to the switching of the magnetisations on
either side of the contact. A clear spin-valve switching signal was observed, although
the signal was never more than about 0.5%. The resistances of these samples were in
the range of tens to a few hundred �, stable over several days under UHV storage
conditions. These became unstable in minutes when exposed to air. Wegrowe et al.
studied carbon encapsulated magnetic nanoparticles embedded in a Co or permalloy
matrix in a nanowire geometry [394]. Magnetomechanical effects leading to huge
MR were found, but some tens of per cent of MR remained after they have been
accounted for – although it is difficult to be certain of the exact conduction path in
such a structure.

The group of Viret et al. in Saclay have studied truly atomic scale contacts, and
demonstrated conductance through a single atom of Ni [395]. These samples were
mechanical break junctions showing clear conductance quantisation, measured at
low temperatures – the junctions were formed in an inert helium atmosphere.
Complicated MR responses of a few tens of per cent were found, composed of
smoothly varying curves, with some discrete jumps at largely reproducible field
values: some data is shown in figure 38. The field direction dependence indicated
that this is an effect with the same symmetry as the AMR, and could be interpreted
in terms of the spin–orbit coupling of the orbitals in atoms forming the contact. In
a follow-up paper they described how to account for and minimise magnetostrictive
effects in these junctions [396]. Since orbital moments are generally found to be
enhanced in low-dimensional systems, one might expect that their effects on the
transport would also be augmented. Indeed, a so-called giant anisotropic MR has
recently been detected in an Fe atomic contact by this group in both the atomic
contact and tunnelling regimes [397], as well as in Ni by Yang et al. [398]. A theore-
tical description of the so-called ‘‘ballistic anisotropic magnetoresistance’’ has been
given by Velev et al. [399].

Most recently, the group of Chopra et al. continue to insist that the effects they
measure are real, and claim no magnetostriction-related artifacts in Ni contact
showing large MR in the sub-G0 conductance limit [400]. They argue that at this
point even a sub-Å motion of the contact would result in a total loss of conductance.
However, the MR traces that they measure are noisy and rather irreproducible – they
certainly do not show the clear features of those in [395], which clearly occur at
particular values of applied field.

Work in this area continues in a number of groups. Whilst very large effects have
been seen in metallic contacts, it seems as though the effect tends to vanish rapidly as
efforts to exclude artifacts are made, and there is no example of a contact that shows
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BMR in a stable fashion over long periods of time. It seems as though the large

effects are confined to samples where the characterisation of both the atomic and

magnetic configurations leave something to be desired. So long as this is the case it

seems as though the theoretical predictions of very large DWMR effects in these

junctions will remain to be confirmed convincingly. Nevertheless, a large number of

intriguing experimental trends remain unexplained, and it is unlikely that there will

be no further breakthroughs in this area.
As a closing remark, few attempts to examine nanocontacts in the new class of

ferromagnetic semiconductor materials have been made so far. In principle, the

requirements are less stringent as the much longer Fermi wavelength in semiconduc-

tors means that one can arrive at conductances �G0 with conventional, albeit high-

resolution, lithography techniques, although the heavy doping required to generate

ferromagnetism will reduce the lengthscales somewhat over those in usual III–V

heterostructures. The discovery of a 2000% effect in a (Ga,Mn)As double constric-

tion (see figure 39) patterned into a wire by electron beam lithography has been

explained not by a DWR effect, but by TMR [401]. At the edges of a semiconductor

wire Schottky sidewall depletion occurs – at the constrictions these depleted regions

overlap giving rise to a narrow barrier of material that is neither conducting

nor magnetic. Since the scale of the sidewall depletion is expected to be spin-

dependent, the width of this barrier naturally depends on the relative magnetic

configuration (parallel or antiparallel), giving rise to exponentially large effects as

the electrodes reorient. Further studies in similar (Ga,Mn)As devices have revealed a

form of tunnelling anisotropic magnetoresistance in lateral nanocontacts [402].

Figure 38. Resistance as a function of applied field in the atomic contact regime of a Ni-Ni
mechanical break junction. The field is applied transverse (a) and longitudinal (b) to the bridge
(i.e., the current). The inset is a schematic of the expected geometry of the atomic constriction.
After Viret et al. [395].
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Conduction in this material was found to be highly anisotropic, as large tunnel AMR

effects have been just been observed in vertical tunnelling stacks with one or more

GaMnAs electrodes [403, 404]. No doubt other exciting new discoveries will be made

as work goes on to examine other ferromagnetic semiconductor systems, some of

which show promise at room temperature [405, 406].
To briefly summarise at the end of this section, there is an extensive literature

going back many decades where the resistance of domain walls has been measured.

It seems fair to say that most of these experiments have not detected intrinsic effects,

but voltages caused by other changes in the electric field with domain structure due

to anisotropic MR, Kohler MR or Hall effects have been been measured.

Unequivocal intrinsic effects have been detected in high Q materials such as L10
ordered alloys and SrRuO3 by various groups. Clever use of exchange spring

heterostructures or lithographic nanostructuring has also revealed intrinsic effects.

These have all shown a rise in resistance within a domain wall. The magnitude of

the rise is very much in line with what might be anticipated on the basis of the

spin-mistracking/spin-mixing models described in some detail in the previous section

(section 4.2). An interesting exception seems to have been found in the GaMnAs

dilute magnetic semiconductor system, and there is no doubt that future

developments with such materials will bring many new results.

5. Current-induced Domain Wall Motion

Bearing in mind the third of Newton’s laws, it seems obvious to ask that if the

presence of domain walls can affect the flow of a spin-polarised current, can the

the flow of the current affect the walls themselves?

Figure 39. False-colour SEM picture (side view) of a double constriction fabricated from
(Ga,Mn)As showing part of the outer wires with the voltage leads. Note the resist that is still
present on the wire. The insets show the relative magnetisation of the parts (left) and the
resulting schematic MR trace for sweep-up (solid line) and sweep-down (dashed line).
Overlapping Schottky sidewall depletion in the constrictions causes a double lateral tunnel
junction to be formed, which displays a helium temperature magnetoresistance ratio �2000%.
After Rüster et al. [401].
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Although this question was first posed (and answered in the affirmative) in the
1980s, there has a been a recent resurgence in this field, for much the same reasons
that the question of DWR has been returned to lately: the availability of high quality
thin films and multilayers, superior nanofabrication facilities allowing well-
controlled experiments, and the promise of lucrative technological applications.

In the last case, the idea of electrically manipulating magnetic domain states is
particularly attractive from the point of view of writing data in a magnetic random
access memory (MRAM) [407, 408]. Current technologies rely on the application of
localised magnetic fields generated by arrays of conductors that overlie the MRAM
elements themselves, which are usually magnetic tunnel junctions. A current flowing
along one conductor, known as the word line, ‘‘half-selects’’ all the MRAM elements
in the row that lies beneath it, reducing their coercive field. A current is then passed
through the perpendicular conductor, the so-called bit line, that intersects the
word line at the MRAM element that is to be switched. The current in the bit line
generates a field that is larger than the reduced coercivity caused by the word line,
but is smaller than the coercivity of all the other elements. In a perfect system only
the element at the intersection of the energised word and bit lines will switch. In
practice, extremely tight engineering tolerances are required to ensure this, and cross-
talk is a continuing worry in trying to implement this technology – one of the reasons
for strong competition from phase-change technologies. New schemes, such as toggle
MRAM [409], whilst improving matters, do not overcome the basic shortcoming of
the scheme that one must perturb an entire row of elements to switch just one of
them. Added to this is the fact that driving the currents through the conductors is
an energetically costly way to switch the magnetisation of a single element.

Using an all-electrical scheme where the application of a spin-polarised current
pulse performs the switching is very attractive. It is straightforward to confine
a current to a single element in the MRAM array, as well as the required current
pulses consuming much less energy. The motion of a domain wall can be used to
accomplish this, either by driving it back and forth past the point where the data is
read out in the storage layer, or using the highly localised magnetostatic field
generated by the wall to switch an adjacent element.

We shall begin by reviewing the experimental progress in this field before turning
our attention to the theory that has been developed to describe and interpret these
results.

5.1. Experimental results

The first work on the application of forces to a domain wall using a high current
density pulse was carried out by Luc Berger with a variety of co-authors in the 1980s.
As well as several purely theoretical papers that we shall review in section 5.2, there
are some reports of experiments being carried out in sheet films of NiFe of various
compositions around the permalloy one – in fact it seems as though the zero
magnetostriction composition of Ni81Fe19 was being aimed for in each case, but
the difficulties of preparing stoichiometric alloys by evaporation prevented this
from being achieved accurately.

In the first of the papers, the domain structures of films of Ni87Fe13 of �28 and
�42 nm thickness were imaged using a Faraday effect microscope [410] as current
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pulses of a density up to �1011 A/m2 were passed though the film. The current pulses
were about 2 ms long and of up to 45 A amplitude. Careful control experiments were
done to show that the observed effects were not due to the stray Oersted fields
generated by these high currents passing through the sample or the leads that
were connected to it. Moreover, the fact that the walls always moved in the opposite
direction to the conventional current, viz. in the direction of the electron drift
motion, is compelling evidence that it is these carriers that are exerting pressure
on the wall. The thinness of the films ruled out the possibility of hydromagnetic
drag, related to the Hall effect, causing the wall motion. These results were inter-
preted in terms of a so-called s–d exchange force (see [411], discussed in more detail
in section 5.2 below), with the s-like carriers being the itinerant electrons carrying the
(spin-polarised) current and the d-like carriers being the localised magnetic moments
that form the magnetisation of the sample. After a quantitative analysis of the
domain wall motion, the coupling constant of the drift velocity (/ the current
density) and the force on the wall was measured, and found to be of the same
order of magnitude as predicted by the theory [411]. In an extension of this experi-
ment, Hung and Berger measured the differing effects of high current density pulses
on Néel and cross-tie walls in thin permalloy films [412].

Experimental efforts to research these topics then disappeared for many years
before the discovery of current driven switching effects in multilayer point contacts
[413] and nanopillars [414] by the group of Buhrman at Cornell. These experiments
were the first confirmations of the theoretical idea of a spin-transfer torque of
Slonczewski [415], and built on previous experimental results where hints of the
presence of this torque had been observed [416–418]. The basic principle of
current-driven switching is that a current driven from one magnetic layer into
another that is antiparallel must relax its spin polarisation to match that of the
layer it is entering over the scale of a spin diffusion length. As the spins in the
conduction current (s-like carriers) relax into their new direction, there is a change
in the angular momentum of the system by �hh for each spin that flips. This continuous
change of angular momentum as the current flows corresponds to a torque, �hhPJJ=e
(J is the charge current density, PJ is the spin polarisation of that current), that is
exerted on the angular momentum possessed by the lattice (d-like carriers). If this
torque is sufficiently large to overcome the anisotropy barrier of the layer (the @E=@	
of which will act as a restoring torque) then its magnetisation can be switched in
direction to match the incoming current. Reversing the current will reverse the sign
of the torque, switching the layer back. It is clear that the relaxation of accumulated
spins in a ferromagnet is at the heart of this effect.

Injecting spins into an oppositely polarised domain is obviously very similar in
nature to injecting them into an oppositely polarised layer. Hence one will anticipate
that as the carriers enter the oppositely polarised domain they will exert a torque on
the volume of the domain within one spin diffusion length of the wall as they relax
their spin directions. Although in this hand-waving explanation we have tacitly
assumed that ‘sd 	 D, it is possible to generalise to cases where this might not be
the case. It is therefore of obvious interest to search for these effects experimentally,
as it will be possible to estimate the degree of spin accumulation that does indeed
take place at a domain wall (recall the controversy over this point in [90, 195–197,
199]. It was not long before experimental searches were began in nanostructures
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more suited to the high current densities required than the sheet permalloy films of
Berger and his colleagues.

Perhaps the first published experimental report of this renaissance in interest was
from Gan et al., who observed domain wall motion in 20 mm wide permalloy wires
using a magnetic force microscope [419]. They found that for current densities
exceeding 2:5� 1011 A/m2 the Bloch walls crossing the wire, along with the closure
domains at ether end of them, could be moved distances of the order of a micron by
pulses with an exponential fall time of about 1 ms – some representative MFM images
are shown in figure 40. The exact distance travelled by the wall depended sensitively
on local pinning conditions, as sometimes abrupt jumps in wall position were seen,
similar to Barkhausen effects. Importantly, the direction of wall motion was always
opposite to the conventional current, that is to say it followed the motion of the
electrons through the wall, a key prediction of the spin-transfer theory. A current
pulse-driven reversible single-twin vortex transition was observed by MFM in the
same laboratory in micron scale permalloy islands [420].

Versluijs, Bari and Coey measured a non-linear I–V characteristic in their
magnetite contacts [319], the same ones that showed a large nanocontact magneto-
resistance discussed in section 4.4. This non-linearity was ascribed to ‘‘spin pressure’’
applied to the wall by the very high current density, � 1013 A/m2, in the nm-sized
contact. This effect is different to the spin-transfer torque, a transfer of angular
momentum: ‘‘spin pressure’’ arises from a force caused by the transfer of the linear
momentum of the moving electrons as they are back-scattered by the highly magne-
toresistive wall in the nanocontact. As the wall is pushed out of the nanocontact into
the bulk of the crystal by this pressure it must expand in area, and so the wall energy
must increase in proportion – this energy gradient represents a restoring force push-
ing the wall back in to the constriction. As the current is increased the wall will
expand out of the nanocontact in what Versluijs et al. have termed the ‘‘magnetic

Figure 40. A sequence of magnetic domain propagation with successive current pulses.
40� 25 mm MFM scans of the same area of the surface at (a) the initial states, (b) after one
pulse and (c) after two pulses. Arrows are drawn to highlight topographic defects to serve
reference points for domain motion. The current direction is down and the domain walls move
in the opposite direction. (d) Zoom-in-image of a segment of a Bloch wall. The boxes in (a),
(b), and (c) show regions where the wall structure change with pulse. After Gan et al. [419].
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balloon’’ effect. They estimated that the wall was pushed out of the nanocontact
by �10 nm in their experiments. Céspedes et al., working in the same laboratory,
later reported on telegraph noise in Ni nanoconstrictions fabricated in a planar
geometry using electron beam lithography [421], related to the motion of a domain
wall as it reconfigures itself as actual material is moved around by the electron wind
electromigration.

The Orsay group were amongst the first to reproduce the Cornell spin-transfer
torque results using nanopillars fabricated from Co/Cu/Co trilayer structures [422],
clearly demonstrating that oppositely directed currents at a high enough density
could couple the layers either ferromagnetically or antiferromagnetically by measur-
ing the GMR response of the pillar to an applied field under different current bias
conditions. The same group soon moved on to study domain wall motion in planar
1 mm wide wires patterned from a CoO/Co/Cu/NiFe film spin-valve structure – the
CoO provided pinning below its Néel temperature of 290K. The Co layer was
maintained in a single domain state throughout the experiments by this pinning.
The domain state of the NiFe layer was then assessed by measuring the GMR of the
sample, which was determined by the fraction of the NiFe layer that had its magneti-
sation lying parallel or antiparallel to the that in the Co. As a wall moves along the
wire, reversing the magnetisation direction from one sense to the other a continuous
change in resistance is expected, and the wall position can be accurately determined,
as was demonstrated by Ono et al. in a similar (but unpinned) structure [423].

In the first of a series of publications, Grollier et al. measured the response of a
spin-valve sample with a notch positioned one-third of the way along its length [424].
A standard magnetoresistance loop showed that a wall would be trapped in the
notch over some field range during switching in both directions. With the sample
prepared by field cycling to have the wall in the notch, measurements of resistance as
the current bias is swept were recorded, showing sharp changes as the wall was swept
out of the contact and the spin-valve wire takes up a fully parallel or antiparallel
state. The lowest current density capable of inducing the switching effect was
0:98� 1011 A/m2, or 1:8� 1010 A/m2, if only the current flowing through the
permalloy layer is considered. However, the findings in this paper are at odds with
the spin-transfer theory in that the direction of motion of the wall is independent of
the direction of flow of the current – the authors themselves speculated that the wall
displacement they observed might be related to the longitudinal components of the
Oersted field generated by the redistribution of the current flow as it passes through
the constriction.

This problem was resolved in the next paper from this group, where the current
direction did control the direction of wall motion [425]. In this experiment the
spin-valve stack was identical but there were no artificial domain wall traps intro-
duced: the only pinning was due to the naturally occurring defects in the 0.3 mm wide
sample. In the measured MR loop the permalloy layer was seen to switch in a series
of a few abrupt steps, each separated by a few Oe. It was possible to pause on one
of the plateaux between the steps and reduce the field to zero, placing a domain wall
on one of these weak pinning sites. Cycling the current through the device it was
possible to reversibly switch the wall between the various pinning centres, as seen in
figure 41. This reversibility of the motion as the current is reversed is key to demon-
strating that the results are due to spin-transfer effects, as neither applied fields or
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thermally activated depinning due to Joule heating under the high current density

applied will give rise to such behaviour. The critical current density to initiate wall

motion was only � 1010 A/m2, an order of magnitude lower than in the various

nanopillar devices studied up to that date, e.g. [414, 422]. More details of this

experiment were reported in a third paper [426]. They included the applied field

dependence of the critical current density, which allowed the strength of the pinning

potentials to be determined in terms of the effective fields they exert on the walls

as they are pushed by the flow of polarised carriers.
Further experiments on similar structures were performed in collaboration with

Lim, Devolder and Chappert to determine the effect of very short (sub-nanosecond)

current pulses on domain wall motion [427]. This 0.3 mm wide spin-valve stripe was

coupled to a coplanar waveguide structure to give high bandwidth connections for

Figure 41. Resistance vs current in very low constant field H along a spin-valve stripe. (a)
H¼ 4 Oe (gmotion from 2 to 3 with a positive current;m motion from 2 to 1 with a negative
current); (b) H¼ 3 Oe (motion from 2 to 3 with a positive current and back to 2 with a
negative current). The results in this panel indicate the fully reversible nature of the control
of the wall position. The numbers 1, 2, and 3 refer to the DW configurations and correspond-
ing resistance levels associated with previously identified intrinsic pinning defects. A small
contribution (�I2), due to the joule heating (�T � 5K), has been subtracted for clarity. After
Grollier et al. [425].
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routing the pulses through the device, and artificial pinning notches were introduced
once again. The wall motion was again probed using magnetoresistance with the
measurement electronics coupled into the sample using a bias tee. Walls were placed
in the notch using a field cycling procedure, and then displaced from it by the pulse.
No dependence of critical current density or wall displacement on pulse width was
found down to 0.4 ns, the shortest pulse measured. There is a dependence on the
pulse current amplitude, with the critical currents of the order of 1010 A/m2. Once
this value is exceeded, the wall is ejected from the end of the wire (a displacement of
at least 20 mm) for all pulse durations.

The depinning of a domain wall at a patterned pinning site was studied by
Kimura et al. in a pair of related papers [428, 429], where they studied a 200 nm
wide NiFe wire attached to a 1 mm wide pad – the pad has a much lower coercivity
and so creates domain walls at the point where it is attached to the the wire upon
switching, as shown in figure 42. The magnetisation reversal of the pad and wire were
monitored using low noise sensing of the AMR as the magnetisation rotated, shown
in the upper panel of the figure. The depinning field of the wall from this point was
measured as a function of current: it was found to decrease for both current direc-
tions but much more rapidly for current flow where the electron current is travelling
into the wire. The current dependence of the depinning field was fitted well by a
parabola, not unexpected since the spin-transfer effect will be linear in current, but
Joule heating will be quadratic. This fit yielded a coefficient for the linear term that
was in good agreement with the spin-transfer torque model for reasonable assump-
tions about the polarisation and spin diffusion length in NiFe [428]. This asymmetry
was reproduced in differential resistance measurements where the depinning of the
domain wall, detected as a sharp spike at the depinning field, was detected only for
spin-currents flowing in the direction of wall propagation [429].

Electrochemically deposited nanowires grown in ion-track etched polycarbonate
membranes, typically 80 nm in diameter, were studied by Kelly et al. [430].
It was found that the angular dependence of the switching field for the wires,
monitored by magnetoresistive means, was different for current flowing in different
directions, but flipping both current and field restored the symmetry, suggesting a
geometric asymmetry in the wire itself. More complex nanowires were also grown,
with a half nickel wire attached to a Co/Cu multilayer that can act as a spin injector
into the Ni. Again a difference in switching field was detected, and in this case it
was possible to ascribe it to the spin-polarised current injected from the multilayer
exerting a torque on the moments in the Ni.

Preparation of well-controlled domain walls is not straightforward in straight
wires. Rings offer a convenient means of generating head-to-head walls by demag-
netising the structure into the so-called onion state [431–433], where two curving
domains pass around the two halves of the ring. It is possible to generate such a wall
by demagnetising the ring in a particular direction and then moving the wall around
the ring by applying a small field in that direction. In this way, it can be made to
move past some electrical contacts attached to the ring and this motion can be
detected by the small drop in resistance, due to the AMR, when the wall lies between
them. Kläui et al. used this scheme, measuring the passage of the wall using a lock-in
amplifier to detect a small ac current, under different dc current bias conditions
to detect current driven wall motion in �1mm diameter permalloy rings [434].
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The switching fields were shifted to higher or lower values depending on whether the

spin-polarised electron flow was against or with the direction of the applied field

respectively. Similar results were found in notchless rings where the current flow will

not be distorted by the constriction and the generation of longitudinal components

of the Oersted field can be categorically discounted. In a further study that combined

numerical micromagnetic calculations with experiments on rings a controllable wall

motion was demonstrated using 20 ms wide current pulses [435]. A domain wall could

be ejected from between two voltage probes in a similar geometry to the previous

experiment, and then reversibly returned to between them several times in succes-

sion. Careful choice of the contacts at which the current pulses were injected

corrected for possible overshoots of the wall position during motion, as the wall

Figure 42. Typical longitudinal magnetoresistance of the fabricated permalloy wire mea-
sured at 4.1K together with the calculated magnetic configurations which correspond to the
magnetoresistance indicated by letters (a–d) in the figure. The arrows indicate the resistance
jumps due to the magnetisation reversals. These were found to be suppressed asymmetrically
by applied dc currents in accord with the expected behaviour of the spin-transfer effect. After
Kimura et al. [428].
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cannot pass beyond the contact where the spin-transfer current originates. For rings
fabricated from thin permalloy (5–10 nm) the agreement between calculations using
a version of the LLG software [436] that contains an adiabatic spin-transfer term
based on the Slonczewski model [415] and experiment is good, with a critical current
density of �5� 1011 A/m2 needed to initiate wall motion. For rings fabricated from
thicker permalloy films, where vortex walls form, the calculation overestimates the
experimental critical current density of �10� 1011 A/m2 by roughly a factor of 3.
(There is a similar report of the generation and current induced motion of vortex
walls in sub-micron permalloy U-shaped wires, which, of course, incorporate half
a ring [437].) This difference was ascribed to either the need to treat non-adiabatic
effects [438] or take account of edge roughness [439, 440]. The degree of control and
reproducibility demonstrated in this ring structure is essential for the possible use
of spin-transfer mechanisms to be used as a reliable means of writing data to a
MRAM device.

The signature of spin-transfer effects is some asymmetry between domain
wall motion and current direction. Tsoi, Fontana and Parkin exploited this to
demonstrate spin transfer effects in a CoFe nanostructure, where the wall motion
was detected magnetoresistively as the walls entered notches, as above [441]. The
nanostructure was straight but had a diamond-shaped wall nucleation pad at one
end, currents flowing away from the pad displaced the walls from it (so long as they
exceed �1011 A/m2 in density), whilst those flowing towards the pad never moved the
wall. A curved, C-shaped permalloy wire with a nucleation pad (shown in the left
hand panel of figure 43) was used by Vernier et al. to perform a related experiment
[442]. The wall was positioned in one corner of the C by a rotating field before being
subjected to a dc current, the subsequent motion was detected by a Kerr effect
nanomagnetometer [443]. As the current density was increased, the applied field
required to ensure wall propagation along the final branch of the C under the
focussed laser spot decreased, as expected for Joule heating. However a small
difference in propagation field was detected for opposing current directions, as
expected for spin-transfer effects. A current density of �2� 1011 A/m2 was needed
to give rise to a difference in propagation field of 1Oe, with a rough proportionality
observed between the two quantities. Finally, reversible field free motion of the
wall driven only by a spin-polarised current was demonstrated by these authors.

Vernier et al. were able to estimate the pressure applied to the wall per unit
current density as about 0.44 nN/A, of the same order of magnitude as the values
(0.6 nN/A) that can be derived from the early experiments of Berger and colleagues
[410, 412]. The measurement of the current-induced wall velocity was accomplished
by Yamaguchi et al. using a bent L-shaped wire geometry with an injection pad, with
the detection of individual walls by carried out by MFM [444]. Walls were nucleated
at the pad and placed in the corner of the L by an appropriate sequence of applied
fields. A series of pulses of fixed amplitude and variable (�ms) duration were applied
to the wire and the wall displacement measured, with the wall position being reset
in the corner each time. A plot of displacement against pulse duration will have a
straight line form with a slope of the wall velocity. This velocity was measured in the
narrow range of current densities between the onset of motion (�1:1� 1012 A/m2)
and the degradation of the wire by Joule heating (�1:3� 1012 A/m2). (In a subse-
quent paper from this group of authors they estimated the rise in temperature of
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their permalloy nanowire as a result of the application of the pulse by measuring its
resistance during the pulse and then comparing this with an extrapolation of the
known R(T ) behaviour of the wire [445]. Since they based their current densities in
[444] on the room temperature resistance these current densities should be revised
down into the high 1011 A/m2 range. The wire was found to rise to temperatures of
750K for a true threshold current density of 6:7� 1011 A/m2, and the temperature
exceeded the Curie point of the wire for J > 7:5� 1011 A/m2.) The velocities found
were a few m/s, rising from 3m/s to 5m/s over the range of current densities inves-
tigated. This velocity is rather slow when compared to the devices previously dis-
cussed, that were switched in sub-ns times by Lim et al. [427], where motions of at
least 20 mm were observed, implying wall velocities three orders of magnitude faster
for the Lim et al. results. It is also very much slower than the velocities that can be
achieved when the walls are driven by a field [160].

All the results so far discussed have used conventional 3d magnetic metals as the
basis of the experimental system investigated. As in many areas of spintronics, the
use of dilute magnetic semiconductor (DMS) materials offers new experimental
opportunities. The most widely studied of these is (Ga,Mn)As, and Yamanouchi
et al. have demonstrated current-induced wall motion with a remarkably low critical
current density in this material [446]. They grew their (Ga,Mn)As on an
(InyGa1�y)As buffer layer to induce a tensile strain and hence an out-of-plane
anisotropy. Three different thickness areas were patterned in a 20 mm wide channel,
each with associated Hall contacts. The different thickness sections have different

Figure 43. (Left) Electron micrograph of a C-shaped magnetic nanowire beneath non-
magnetic electrical contact pads. Fabrication was by electron-beam lithography using a
30 kV electron acceleration voltage, polymethylmethacrylate resist, metallisation by thermal
evaporation and performing lift-off in acetone. The nanostructure had 80 mm long horizontal
arms, 60 mm long vertical arm and corners with a turning radius of 10mm. The inset shows
a high-magnification image of a vertical part of the nanowire. (Right: A) Horizontal magnetic
field for domain wall propagation, Hp, of the lower arm of the magnetic nanowire in a
counter-clockwise applied rotating magnetic field having Hx ¼ 112Oe and Hy ¼ 53Oe
(peak values), as a function of the magnitude of the current passing through the nanowire.
g data points show negative current, . data points show positive current. (Right: B) The
difference, �Hp between Hp values for positive and negative current ðHp ¼ Hpð�IÞ �HpðþIÞÞ,
as a function of current magnitude. This difference, / I, is the clear signature of spin-transfer
effects. After Vernier et al. [442].
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coercive fields, and steps between the different segments of the channel act as pinning

sites for domain wall motion. Hence it was possible to prepare various different

magnetic states by careful choice of applied field history. A perfectly reproducible

and reversible domain wall motion between the steps was observed for alternating

100 ms wide current pulses, with a critical current density of only 108 A/m2, startlingly

lower than in any of the metals results given above, as seen in the MOKE images of

the device shown in figure 44. The efficiency of the effect (the ratio of the change

in the angular momentum of the magnetisation spin system to the total number of

polarised carriers passing) is of the order of 8%, roughly in line with the results from

the permalloy wire of Yamaguchi et al. [444]. Hence, one reason why the critical

current density is so much less is the much smaller magnetisation of the (Ga,Mn)As

that the current must move, so a much smaller torque is required. However, the

details of the p–d exchange that must be taking place if spin-transfer is occurring are

not completely clear at present.
As a brief aside, the most common device used as an MRAM element is a

magnetic tunnel junction. The ability to switch an MTJ using spin-transfer torque

in a nanopillar geometry was considered very challenging, as the high resistance of

the barrier prevent high current densities from easily being applied to such devices

without destroying the sample. However, the low current densities needed to switch

DMS materials meant that this was achieved readily in a (Ga,Mn)As/GaAs/

(Ga,Mn)As trilayer device at current densities as low as 1� 109 A/m2 [447]. The

feat was recently accomplished in metal based MTJ structures by the Cornell

group, who fabricated CoFeB/AlOx/CoFeB junctions with ultrathin barriers (only

3.5�mm2 specific barrier resistance) and switched them with current pulses of

density �5� 1011 A/m2 [448]. These current densities are comparable to those

needed to switch similar layers in CPP spin-valves with metal spacers, indicating

Figure 44. MOKE images of a (Ga,Mn)As sample using 546 nm light at �80K. Black and
white regions in the channel correspond to positive and negative values of M, respectively. (a)
The MOKE image of the initial state, where the domain wall is at the left edge of region II.
Regions I, II, and III are indicated by arrows in the image and correspond to lithographically
defined regions of differing vertical height. (b) The MOKE image after application of a current
pulse I ¼ �300mA (100ms), showing that the domain wall is now at the right edge of region II.
(c) A positive current pulse of I ¼ þ300mA (100ms) switches the domain wall back to its
original position. The wall moves in the opposite direction to the conventional current. After
Yamanouchi et al. [446].
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that it is the flow of the spin-current that matters, rather than the means by which the

current is carried. Subsequently the same group were able to tune the spin-transfer

torque up or down in MTJ devices by the addition of a further ferromagnetic

polarising layer [449]. Similar results have been achieved by Huai et al. [450].

Theory of spin-transfer torque in a MTJ device was given by Slonczewski [451].
A special case of current driven domain wall motion is the injection of a bubble

domain into a Co film by spin-transfer torque using a non-magnetic point contact by

Chen et al. [452]. Previously spin-wave excitations caused by the injection of high

current densities had been observed in multilayers [416, 417] and then in single mag-

netic layers [453] with the current injected through such a point contact. In the

experiment of Chen et al., the surface of the Co was allowed to oxidise to give an

exchange bias effect at low temperatures, stabilising the magnetisation. The ability to

generate torques at the interface of a single magnetic layer at first seems counter-

intuitive, but recalling our discussion of the spin-polarisation of a diffusive current in

section 2.3, we see that the current in the lead is polarised by spin accumulation before

it enters the layer. This gives rise to spin-wave instabilities even in the case of a

perfectly uniform initial magnetic state [454, 455]. The tiny domain that is switched

under the contact is estimated to be only 5 nm in size, but gives rise to a considerable

magnetoresistance, by which means it can be easily detected.
The most recent development in the spin-transfer physics of nanopillars is the

generation of sustained microwave frequency dynamics in the appropriate field and

current regime, which has been measured in both the frequency [456] and time [457]

domains by the Cornell group. Extremely high Q ¼ �f=f factors of a few 104 for the

oscillation have been demonstrated in point contact samples by Rippard et al. [458],

and coherent phase-locking of nearby point contact devices has been recently shown

[459, 460]. The effect has been modelled by Xi and Lin using a modified form of

the LLG equation that contains an additional spin-transfer torque term to drive

a macrospin representing the entire layer [461]. As yet, there is no analogue

of these experiments in using the spin-transfer torque to excite dc current driven

oscillatory DW motion, although an unusual rotational motion of a domain wall

within a nanopillar has been predicted [462]. This effect can be used to operate

a nanoscale rotary motor or microwave oscillator that is driven only by a dc

current [463, 464].
Nevertheless, there was an extremely interesting report recently from

Saitoh et al. of a current induced resonance of a domain wall in a curved permalloy

nanowire [465]. Using similar techniques to those used in the nanorings to generate

a head-to-head wall, a ‘‘magnetic pendulum’’ was constructed, where a field directed

towards the bottom of a U-shaped semicircular wire acts as the analogue of a

gravitational force on a mechanical pendulum. This downward force gave rise to

a magnetostatic potential energy of

U ¼ �QMHy � �QMH r�
x2

2r

 !
ð50Þ

for small displacements x from the bottom of the curve. In this expression

QM ¼ 2�0MsS is the magnetic charge on the wall, and r is the radius of curvature
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of the wire (S is the cross-sectional area of the wire). This potential gave rise to

an eigenfrequency fe given by

fe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QMH

4p2mr

r
, ð51Þ

where m is the domain wall mass. If the wall motion is driven at a frequency close

to fe then the amplitude of the motion will be greatly enhanced as the system will be

at resonance. This results in increased dissipation of energy and as a result a

greater absorption of power from the source that is driving it. The experiment was

carried out by driving an ac current through the wire. For fields up to 150Oe the

resonant frequencies were a few tens of MHz, and a marked rise in wire resistance

(dissipation of energy) was observed in a range a few MHz wide around this

frequency, shown in figure 45(c). This experiment allowed the mass of a single

domain wall to be measured for the first time, found to be �7� 10�23 kg for a

70 nm wide wall.

Figure 45. Comparison between experimental results with and without a domain wall in (a)
a semicircular permalloy wire (DW) and (b) magnetic force microscope images around the
bottom of the Ni81Fe19 loop in remanent magnetic states measured with a scanning probe
microscopy system equipped with a low-moment CoPtCr tip. Before the measurement shown
in (a) and (b), the initial fieldsHy

ini ¼ 10 kOe andHx
ini ¼ 10 kOe are applied, respectively, which

are then set to zero. The dashed lines represent the outlines of the Ni81Fe19 loop. A DW is
imaged as a bright contrast, which corresponds to the stray field from a positive magnetic
charge. (c) Frequency f dependence of the a.c. resistance R for the system with a DWmeasured
by applying an external magnetic field of 150Oe in the direction y. The arrow represents the
frequency at which R reaches a maximum. At this point the wall is undergoing resonant
motion and dissipating energy. (d) Frequency f dependence of the a.c. resistance R for
the system without DWs measured by applying an external magnetic field of 150Oe in the
direction y. After Saitoh et al. [465].
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Another important result was that it was possible to separate the force on the
wall due to the transfer of linear momentum from scattered electrons from the
torque applied due to the relaxation of spin angular momentum, as these have
different frequency dependences when Fourier analysed [466]. The result found
was that the force due to the linear momentum was roughly two orders of magnitude
larger when amplified by the resonance. The oscillatory motion of the wall at reso-
nance, with an estimated amplitude of several mm, was driven with a current density
of only 3� 1010 A/m2, a rather low value for a 3d metal system. This low current
density means that the heating effect is rather low for this driving mechanism. This
resonance effect may be able to explain many of the odd (and sometimes contra-
dictory) features of current-driven wall motion where short dc pulses are used, such
as a lack of dependence on pulse duration and the low current density required by
Lim et al. to drive their walls at very high velocities using sub-ns pulses [427]. Pulse
wavepackets with sharp rising or falling edges will contain a great many high
frequency components when Fourier analysed. The walls trapped in a pinning
potential, either a natural defect or an artificially introduced constriction, will
possess a resonant frequency that is the eigenfrequency of that potential. Certain
wavepackets will contain that frequency with sufficient energy to be able to depin the
wall in a resonant manner: since this is likely to happen during the fast rising edge of
the pulse it would explain the insensitivity to the pulse duration. It also suggests
novel strategies for resonant depinning of domain walls in high speed domain wall
devices that will perform memory or logic operations.

5.2. Theory

Some of the earliest efforts to understand current-induced effects on domain walls
date back to the 1970s. Carr considered the force applied to a cylindrical bubble
domain by the current redistribution in a MR overlayer due to the stray field in
that overlayer that emerges from the wall [467]. This induces some longitudinal
field components in the bubble layer generated by the current flow. Carr considered
the example of a permalloy overlayer and a current density of 10A/cm width
of the permalloy. Fields of about 0.01Oe can be generated this way, enough to over-
come the coercive field of a good quality orthoferrite bubble layer. In the next paper
of the same issue of the journal, Emtage considered almost the same situation with the
additional refinement of separately treating the cases where the permalloy overlayer is
saturated by an externally applied field, and when the domain structure of
the permalloy is controlled by the underlying bubble material [468]. Similarly,
small forces and fields were predicted. The forces tend to be transverse to the
current flow direction, and so there is a sort of analogy between this effect and
the flux-flow state in a superconductor. Of course these papers are simply treating
magnetostatic effects. It is of more interest to consider the direct interaction of
the current with a domain wall. This is what Luc Berger did in a series of seminal
papers.

Some of the first of these papers concern what has now come to be known as
hydromagnetic drag [469, 470]. In the following we assume a thin film stripline wire
geometry for convenience of discussion, but in fact the effect is quite general. The
basic principle of this effect is that the current density will be displaced slightly to one
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side of the strip as it passes through a domain wall due to the Hall effect. For a

uniform electric field through the wall the lines of current density must be bent

sharply at twice the Hall angle as they pass through the wall, sketched in

figure 46(a). This partial shift of the current to one side of the sample was detected

experimentally in a Co slab with a single wall by Partin et al., where the current

density was found to be 1.7 times higher at one end of the wall than at the other at

4.2K [471]. This distorted current flow can be decomposed into a uniform part

(figure 46(b)) and a circulating part (figure 46(c)) rotating through the wall. This

d.c. eddy current loop will generate longitudinal and vertical field components that

are able to apply forces to the wall. The wall will tend to move in the direction of the

carrier drift velocity, which will be parallel to the conventional current for holes and

opposite to it for electrons. The force is proportional to the cross-sectional area of

the wall, i.e., the film thickness, and so this hydrodynamic drag effect will vanish as

films are made ultrathin. It is generally only a significant issue for film thicknesses

greater than �100 nm.
More interesting, given the scope of this review, is the direct interaction

between the spin-polarisation of the current and domain wall: what Berger termed

the s–d exchange force and is now known as the spin-transfer effect. This effect is

independent of film thickness and so will dominate over Hall effect hydrodynamic

drag in very thin films [411]. The basic physics of this effect, as described by Berger, is

as follows. Writing the s–d exchange interaction potential V acting on a spin s of a 4s

conduction electron as

VðxÞ ¼ g�B s �HsdðxÞ þHsd=2ð Þ, ð52Þ

where the exchange field Hsd ¼ �2JsdhSðxÞi=g�B, Jsd is the s–d exchange integral,

and the coordinate x is normal to the wall plane. The second, constant term in

quation (52) ensures that Vðx ¼ �1Þ ¼ 0. Within a wall this potential will have a

non-zero gradient which will exert a force

Fx ¼ �g�Bs �
dHsd

dx
¼ �g�BsyHsd

d	

dx
ð53Þ

on the magnetic moment �g�Bs of the conduction electron. The second expression is

derived by introducing an angle 	(x) for the direction of Hsd with that at x ¼ þ1

and local y and z axes in the plane of the wall with z being parallel to the rotatingHsd.

Figure 46. The non-uniform current distribution (a) in a uniaxial material with one wall can
be decomposed into a uniform distribution (b), plus a d.c. eddy-current loop (c) circling the
wall. Also shown in (a) are pairs of potential probes to monitor [471] the current distribution.
After Berger [179].
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By considering the precession of the spin around the exchange field is given by

�hhds=dt ¼ �g�Bs�Hsd and making the ‘‘adiabatic approximation’’ that the angle

between s and Hsd is much smaller than 	(x) one can obtain the following expression

for the force on the wall as

Fx ¼ �
�hh2v2x

4g�BHsd

d

dx

d	

dx

� �2

, ð54Þ

which is the gradient Fx ¼ �dV=dx of the following form of the potential

Vðx, vxÞ ¼
�hh2v2x

4g�BHsd

d	

dx

� �2

: ð55Þ

In these expressions vx ¼ dx=dt is the electron velocity outside the wall. This is the

force exerted by the wall on a single carrier.
Berger then proceeded by arguing that since the wall thickness is many electron

wavelengths, one can treat the electrons classically and write down Ohm’s and Fick’s

laws to describe their diffusive motion. Two spin sub-bands were defined with differ-

ing conductivities, densities of states, carrier concentrations, and diffusion constants.

The classical transport equations were then solved and then as a result the total force

applied to all the carriers by the wall may be obtained.
By Newton’s third law, the force applied to the wall by the carriers will be equal

and opposite to this. The final expression obtained is

Fx ¼
2Msat

�i

�ve � vwð Þ, ð56Þ

with ve the carrier drift velocity, vw the wall velocity, � a constant of order unity, and

�i the intrinsic wall mobility. This turns out to be the same wall mobility that arises

from the intrinsic damping force on a moving wall [472, 473] apart from a factor of

� � 1. (In fact, � is the constant of proportionality for changes in conductivity ��
and changes in carrier number density �n and is given by ��=� ¼ �ð�n=nÞ. In the

Drude formula � / n and � is exactly unity.)
In a previous section (section 4.2) we discussed the calculations by Berger of

magnetoresistance at a domain wall [179]. In the same paper a calculation of the

torque applied to a wall by a spin-polarised current was given, which is predicted to

cant the moments in a Bloch wall slightly in the direction normal to the wall plane,

due to the reaction torque that the carriers exert on the wall as the rotating exchange

field reverses their own spin angular momentum. This canting will be proportional to

the current density and the polarisation of the current. This canting will depend on

the helicity of the wall. Berger suggested that if it were possible to arrange for every

wall in a sample to have the same helicity – a difficult trick to accomplish in practice

– then the induced magnetisation due to the canting could be used to measure the

spin polarisation of the current. The advent of new nanomagnetometry techniques

might allow the canting of a single wall to be measured.
More recently the modelling of the spin-transfer torque, as this reaction torque

is now known, has often proceeded in terms of incorporating additional terms

into the LLG equation (equation 26). The first such approach to this was made

by Slonczewski [415], who considered a N/FM/N/FM/N five-layer structure.
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He determined the form of the torque caused by a charge current I on a macrospin Si

representing the moment of one the two FM layers (labelled i¼ 1, 2) to be

@S1, 2

@t
¼

Ig

e
ŝs1, 2 � ðŝs1 � ŝs2Þ ð57Þ

with ŝs1 and ŝs2 begin unit vectors in the directions of the two macrospins and

g being a factor dependent on the polarisation P of the current given by

g ¼
1

�4þ ð1þ PÞ3ð3þ ŝs1 � ŝs2Þ=4P
3=2
: ð58Þ

This particular form of the expression captures several important features. The first

is that the torque is proportional to the current flow and will change sign when the

current does. Another is that the direction of the torque is correctly given by

the ŝs1, 2 � ðŝs1 � ŝs2Þ vector part of the expression. Finally, Slonczewski predicted

that the torque will depend on the polarisation P of the current and have a particular

angular dependence (shown in figure 47), both captured in the factor g. (The details

of the spin-transfer torque and its angular dependence have been considered in some

detail by Stiles and collaborators [474, 475].) It is worth noting that the idea of

establishing a steady precessional state with a spin-polarised current was predicted

in this ground-breaking paper [415].
This LLG formalism was taken up by Wegrowe in his thermokinetic approach

[476] as well as by Sun [477] who both considered the injection of a spin-polarised

current into a single domain nanomagnet and calculated quantities such as the

current dependent switching field, precessional macrospin dynamics or current

induced switching. These theories are all more suited to the nanopillar/multilayer

geometry than to a domain wall, as they do not treat non-uniform magnetisation.
Bazaliy, Jones and Zhang looked at a generalisation of the LLG equation that

incorporates the transfer of spin from a polarised current [478]. They considered

the specific case of a spin polarised current entering a semi-infinite ferromagnet

from an unspecified source. By deriving a continuum form of the equation for

the magnetisation, they were able to show that moments at the interface of the

Figure 47. Spin-transfer velocities j _SS1, 2j of ferromagnetic spin-vectors S1, 2 versus included
angle 	. The units are Ie=e (Ie ¼ current, e ¼ electron charge). Equal polarisation coefficients
P of the magnets are assumed. After Slonczewski [415].
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ferromagnet will cant away from the bulk direction – hard to detect experimentally,

except perhaps with an element specific technique such as X-ray magnetic circular

dichroism. A spin-wave instability solution was also found, with the current

changing the energy gap and position of the energy minimum in the magnon

spectrum. Most importantly in the context of this review, a moving Bloch wall

solution was also found, with the spin-polarised current pushing the wall deeper

and deeper into the ferromagnet.
More recently, this spin-transfer term has been incorporated into micromagnetic

simulations that are based on the LLG equation. Li and Zhang [479] derived a form

of the spin-transfer torque � in the case of a spatially varying magnetisation direction

� ¼ �
b

M2
sat

M� M� ðĴJe � rÞM
� �

, ð59Þ

where ĴJe is a unit vector in the direction of the charge current density and the

prefactor b ¼ PJe�B=eMsat. (This prefactor b has dimensions of velocity and sets

an important velocity scale for wall motion in current-driven systems.) The similarity

with the Slonczewski term (equation 57) is obvious, and this form is formally

identical to that derived by Bazaliy et al. [478]. They showed that spin-transfer

torque at a wall has many features in common with that at an F/N interface, with

the ratio of the two being given by the ratio of the thickness of the ferromagnetic

layer to the thickness of the domain wall, i.e., the torque is proportional to the

volume of material that experiences spin-transfer effects.
This additional torque term was incorporated by Li and Zhang into a micro-

magnetic code [479] that was described as ‘‘very close to’’ the OOMMF public

code [103]. They used this code to simulate a head-to-head Néel wall in a 100 nm

wide nanowire numerically, and then compared the results to analytical solutions

of the LLG equation that can be found in certain special cases of interest. Upon

application of a current the wall was found to move with a velocity �b immediately,

but rapidly slowed down. This is because the torque causes the wall to develop a small

out-of-plane component that grows with time. This leads to additional damping, and

this extra dissipation slows the wall. One of the most striking results found was that

the application of a current alone cannot move a wall through a distance greater than

some maximum amount / b=� (� is the Gilbert damping constant), in brief burst of

motion that lasts �1 ns – the calculated temporal variation of various quantities of

interest is shown in figure 48. This behaviour is in marked contrast to wall motion

driven by a field where the wall starts to move slowly but is accelerated until it reaches

some terminal velocity. There are experiments that report that wall motion over large

distances requires the application of a field as well as current pulses, such as [425] and

[441]. This observation is naturally explained by this theory. The authors go on to

predict the onset of spin-wave instabilities caused by this torque.
They went on to publish a second paper where they discuss the differences

between adiabatic and non-adiabatic torques [439]. The calculation was based on

a very simple s-d Hamiltonian, Hsd ¼ �Jexs � S where s and S are the dimensionless

spins of itinerant and local electrons and Jex is the exchange integral between them.

This exchange integral was used to define an exchange time �ex ¼ �hh=SJex, then

compared to the spin-flip lifetime in the dimensionless parameter 
 ¼ �ex=�sf.
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Four torques were then found, two arising from temporal variations in the

magnetisation, and two arising from spatial variations. Those arising from the

time variations have no effect other than to renormalise the gyromagnetic ratio 

and the Gilbert damping parameter � in the LLG equation (equation 26). The other

two appear in the modified form of this equation

@M

@t
¼ �
M�Heff þ

�

Ms

M�
@M

@t

�
b

M2
s

M� M�
@M

@x

� �
�

c

Ms

M�
@M

@x
, ð60Þ

where b ¼ PJe�B=eMsatð1þ 

2
Þ and c ¼ PJe�B
=eMsatð1þ 


2
Þ. (The x direction is

parallel to the current flow.) Again these quantities have dimensions of velocity.

The term in b is very similar to that in the previous paper by Li and Zhang [479]

and also that by Bazaliy et al. [478], and describes adiabatic processes. On the other

hand, the term in c was new, and is related to spin-mistracking of the conduction

electrons. Terms such as this were described in detail in section 4.2 above, that

Figure 48. Domain-wall dynamics of the permalloy wire for different spin-currents and for
zero applied field calculated using only the adiabatic form of the spin-transfer torque given in
equation (59). (a) The velocity as a function of time. (b) The displacement of domain wall
versus time. (c) The out-of-plane component of the magnetisation at the centre of the wall,
Mz ¼Ms, versus time. After an initial burst of movement the wall comes to a halt after only
about 1 ns. After Li and Zhang [479].
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dealt with the physics of DWR e.g. the models of Viret et al. [182] and Levy and
Zhang [183].

The new non-adiabatic term, although very small (c=b ¼ 
 � 0:01), is actually of
great importance as it provides a mechanism for distorting the wall, and although all
the adiabatic torque is eventually absorbed after wall deformation, the non-adiabatic
part is not. It allows the wall to continue moving, the b term gives rise to a large
initial velocity, as discussed above, but the c term controls the terminal velocity of
the wall motion, which is no longer zero in zero field. It is this velocity that was
reported by Yamaguchi et al. [444], whereas the very fast initial velocity was mea-
sured by Lim et al. [427] – the theory of this new torque term resolves this experi-
mental discrepancy. A calculation of wall dynamics in biaxial system, using only the
adiabatic torque also concluded that some other torque term was required to repro-
duce experimental wall velocities [480].

Micromagnetic modelling by Thiaville et al. examined more carefully the effects
of disorder [481]. The aim was to simulate the experimental results of Vernier et al.
[442]. They used a simple, Slonczewski-like form of the torque, with a velocity
prefactor of u ¼ JPg�B=2eMsat. (This is essentially the same as the modified LLG
equation given in equation 59. The velocity u and the prefactor b of Li and Zhang are
identical.) For permalloy they estimated that for a current density of 1011 A/m2,
u � 7m/s. In perfect wires wall velocity increased with H roughly linearly until
Walker breakdown [161] of the wall took place at velocities of several hundred
m/s. The difference in wall velocities with current density was / uH2. With wire
roughness included, represented by an average grain size of 10 nm [161], there was
no wall motion for any current density until H exceeded a propagation field of
�25Oe, in accord with experiment. (These results are shown in figure 49.)
However, when simulating the use of current density alone to move a wall, no
wall motion was found below a critical value of u ¼ 600m/s, corresponding to a
current density of 6:85� 1012 A/m2, far higher than in the experiment, where the
results give the critical value of u as 20m/s for P ¼ 0:4 [442]. Above this value the
wall velocity is close to being / u, although with large fluctuations about the mean
for the rough wire. It was shown that thermal activation cannot account for the
reduced propagation field in experiment as kBT is at least two orders of magnitude
two small for T ¼ 400K. The authors concluded this paper by stating that this
simplified form of the torque is inadequate.

Thiaville et al. developed a new form of the LLG equation that could overcome
these problems, developing equation (60) independently of Zhang and Li, by intro-
ducing a term for the torque already proposed by Heide, Zilberman and Elliott in the
nanopillar geometry [482]. This was inserted phenomenologically into the LLG
equation with a prefactor � that is expected, like the Gilbert damping parameter
�, to be much smaller than unity. This term gave rise to a wall velocity / ð�=�Þu
for abitrarily small values of u in the case of a perfect wire, i.e., the critical value of
current density for wall motion is zero. (Such a wire would also present zero coer-
civity to an applied field.) For high current density the velocity is reduced as sidewall
antivortex injection takes place. When wire roughness is included the pinning
potentials create a finite coercivity and also a finite critical value for u. Above this
value the wall velocity is again / ð�=�Þu. Setting the defect density to give a realistic
value for the propagation field and wall mobility [483] gave a good comparison with
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experimental results for the critical propagation current density [435, 442, 444] and

wall velocity [444] with reasonable values of � and �. A summary of these computed

results is shown in figure 50. Taken with the results of Zhang and Li in [439], these

calculations give compelling evidence for an equation of the form of equation (60)

capturing the proper form for the spin-transfer torque. Results recently reported by

Kläui et al. show directly observed transformations of the wall structure from a

vortex to a transverse structure after a few current pulses, which no longer takes

up torque and no longer moves under spin-polarised current influence [484]. These

results indicate that detailed micromagnetic calculations are the only way in which

all the intricacies of this effect will be resolved.
In a calculation of the torque in multilayers by Zhang, Levy and Fert [485], both

torque terms were included. The prefactor � depends on the exchange and spin-flip

lifetimes (or associated diffusion lengths) as � ¼ ð‘J=‘sfÞ
2
¼ �hh=ðJ�sfÞ, giving a physical

basis to the phenomenological introduction of the new term. Taking ‘J to be 1 nm

and ‘sf to be 5 nm in permalloy one obtains a value of � ¼ 0:04 consistent with the

various experimental data. This leads to the as yet untested prediction that reducing

the spin diffusion length ought to increase wall velocities for a given current density.
These non-adiabatic processes were considered by Waintal and Viret [438] in the

same conceptual framework as the Viret spin-mistracking model of domain wall MR,

with the spin Larmor precessing around the rotating exchange field [182]. When the

spin is parallel to the local magnetisation, as it is once each period of the Larmor

precession, the vector product s�M will be equal to zero and there will be no torque.

Figure 49. DW motion by field and current. (a) Picture of the rough wire shape (average
wire width 120 nm) and wall structure at rest, with a gray scale displaying the y magnetisation
component and arrows for schematically depicting the magnetisation. (b) Wall velocity versus
field with or without a fully polarised current, for a perfect (left) and a rough (right) wire. The
velocity is set to zero if the wall stops before the end of the calculation (50 ns). The inset shows
the wall thickness parameter D versus field for the perfect wire. After Thiaville et al. [481].
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At the positions between these points, where the spin mistracking is at a maximum,

the torque will take its highest values. As result there is predicted to be a periodic

distortion of a domain wall as the spin-current crosses it, with a period equal to the

Larmor wavelength, �L ¼ 2p�hhvF=J. These authors argued that this lengthscale is

the important one that determines whether or not the electron crossing the wall is

in the adiabatic limit, for �L � D the process will be adiabatic, whereas for �L 	 D

the wall crossing will be in the interface limit. For typical 3dmetals where J � eV and

vF � 106 m/s, �L will be of the order of a few nm. For most domain walls, the limit

�L � D will be the appropriate one, but for highly anisotropic materials such as L10
FePt or SrRuO3, the condition �L � D may hold.

Waintal and Viret proceeded by writing down a modified form of the Landauer

formula that takes account of the differing spin polarisations for the density of states

(PN, defined in equation 2) and the current (PI, equation 8). This formalism treats

DWR and spin-transfer torque on an equal footing by identifying any spatial

derivative in the spin-current as the torque [486]. The DWR obtained is �R=R ¼
PN�F=ð64D

2
Þ, where �F ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh2=2mEF

p
is the Fermi wavelength. (This is only the

ballistic part of the DWR, usually much smaller than the diffusive part, except in the

interface limit.)
A geometry is defined where a Néel wall lies in the y–z plane, with a current

flowing in the x direction through it. The domains have their magnetisation directed

along the z-axis. A rotating co-ordinate system ðu, v,wÞ ¼ ðdm̂m=d	, dm̂m=d	 � m̂m, m̂mÞ

that follows that magnetisation is then defined: v always points along the y direction,

whilst w always points along the local magnetisation. They arrive at a pair of

expressions for the different components of the torque � per unit current:

@�uðxÞ

@I
¼

�hhp
2eD

PI þ ðPI � PNÞ cos 2p
x

�L

� �� 	
; ð61aÞ

@�vðxÞ

@I
¼ �

�hhp
2eD

ðPI � PNÞ sin 2p
x

�L

� �� 	
: ð62bÞ

Figure 50. Steady velocity computed for a transverse domain wall by micromagnetics in a
120� 5 nm2 wire as a function of the velocity u representing the spin-polarised current density,
with the relative weight (�) of the non-adiabatic exchange field term as a parameter. Open
symbols denote the nucleation of vortices. The shaded area indicates the available experimen-
tal range for u. (a) Perfect wire and (b) wire with rough edges (mean grain size D ¼ 10 nm).
The dashed lines display a fitted linear relation with a 25m/s offset. After Thiaville et al. [440].
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There are essentially two terms to this torque. The first (contained only in equation

61a) is simply proportional to PI, does not depend on x and pushes the wall in the

direction of the electron current. The second appears in both equation (61a) and

(61b), is proportional to ðPI � PNÞ and oscillates with x. This new term introduces a

spatially varying deformation of the wall. An estimate of the size of this term for Ni

suggests that a current density of 1011 A/m2 would introduce a new energy term that

is about the same size as the wall energy density, so that changes in the wall structure

ought to be easily observed. This wall deformation may well help with depinning

from potentials that have features on the lengthscale of �L. As yet, this periodic

deformation has not been observed, although it ought to lead to periodic features

in the magnetic structure of the sample that will give rise to Bragg features at

a wavevector transfer of Q ¼ 2p=�L that could be observed with neutron or resonant

magnetic X-ray techniques. Waintal and Viret comment that their torque term will

only be large for adiabatic (wide) walls, whilst the wall resistance will only be large

for narrow walls that approximate magnetic interfaces. These conclusions regarding

torque and wall width were also reached by Falloon et al. in their circuit theory of

domain wall transport [217].
An alternative way of looking at the problem, proposed by Tatara and Kohno, is

to draw a distinction between transfer of linear and angular momentum to the wall

[466]. When electrons scatter at the wall, due to DW resistance effects, then they will

deposit linear momentum �hhðkf � kiÞ in the wall, corresponding to a force. As usual,

when the spin is flipped into the new domain direction, there is a change of angular

momentum of �hh, corresponding to a torque. Writing the co-ordinates of the wall as

X and �0, for position and angle, these authors derived, from a Lagrangian contain-

ing terms for both the transverse anisotropy of a wire and a general form of a

pinning potential, the equations of motion for the wall, which both contain _XX and
_�0�0, but separate out the force term

Fel ¼ �
J

2S

ð
rxS0ðx� XÞ � nðxÞd3x, ð62Þ

and torque term

�el ¼ �
J

2S

ð
S0ðx� XÞ � nðxÞd3x, ð63Þ

where J is the exchange splitting, S is a localised spin and n is the local spin density

of the conduction electrons. Both Fel and �el contribute to _XX and _�0�0 in the equations

of motion. The torque contributes directly to the wall velocity through through a

term vel ¼ ðD=�hhNSÞ�el where N ¼ 2AD=a3 is the total number of spins in the wall.
From the Kubo formula, it was possible to obtain the simple relationship

Fel ¼ eNe�wj ¼ enRwIA, ð64Þ

where �w ¼ RwA=D is the resistivity due to the wall and Ne ¼ nDA is the total

number of electrons in the wall. This expression encapsulates the idea that the

scattering of electrons from the wall, which gives rise to the wall resistance, means

that the wall applies a force to the electron in order to change its momentum – a

reaction force is of course then experienced by the wall. This force is proportional to
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the charge current, although the spin polarisation of that current will undoubtedly

play a role in determining �w according to one of the models in section 4.2.
It is clear that the force and torque terms will both contribute to wall motion but

will dominate in different limits. In this paper, the adiabatic limit was defined in the

same manner as by Cabrera and Falicov [177, 178], with reference to the Fermi

wavelength, D	 2pk�1F . In this case the spin transfer effect is proportional to the

spin-current density js ¼ Pj flowing in domains, and the following expression for

the time-averaged wall velocity was found

h _XX i ¼
1

1þ �2
a3

2Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2s � ð j

cr
s Þ

2

q
, ð65Þ

where j crs is some critical spin-current density for the onset of wall motion. For large

current density, that is js 	 j crs , one can see from equation 65 that _XX / js, and is

given by the expression for vel. It is in the discussion of the sources of the critical

current density j crs that this model is particularly enlightening. The transverse aniso-

tropy K? of the wire will give rise to a restoring torque as the magnetisation begins to

twist, and as a result the anisotropy barrier must be overcome before the onset of

wall motion (a finite h _XXi) even in the case of zero pinning. Here j crs ¼ ðeS
2=a3�hhÞK?D.

Introducing a parabolic pinning potential of depth V0 and range 
, a second critical

current j crs ¼ ð4e=a
3�hhÞ � ð�V0d

2=
Þ can be found. These expressions allow strong

(V0 0K?�) and weak (V0 9K?�) pinning regimes to be defined, where it is either

the pinning potential or transverse anisotropy that controls the onset of wall motion.

Since in general �� 1, we would expect that it is K? that controls the onset of wall

motion in most experimental cases of interest. Very recently published data from

Ravelosona et al. show massive enhancements of the force per unit current in a

perpendicularly magnetised spin-valve structure – in this case it could be the very

narrow (<10 nm) wall thicknesses that give rise to the high efficiency of the spin

transfer process [487]. (Nevertheless this paper reports the first use of an out-of-plane

magnetised metal system, and also uncovers some important physics relating to the

role of thermal activation in the wall depinning problem [488].) There are also

unpublished results from Ono, where wire aspect ratios affect the critical current

density, and Parkin, where the shapes of pinning potentials have little effect upon the

same quantity, that seem to hint that this theory is correct. This offers an important

advantage to technological exploitation of the effect, since devices will not be

susceptible to weak pinning effects arising through random edge roughness that

is unavoidable in nanofabrication of real systems. Barnes and Maekawa had

previously treated the problem of depinning but neglected the transverse anisotropy,

arguing that it will always be small [489]. They derive expressions for the critical

depinning current and wall velocity in a half metallic material, and claimed

agreement with the experimental results of Yamaguchi et al. [444]. A refined version

of this theory was reported more recently, with a careful treatment of intrinsic and

extrinsic pinning effects [490]. In this theory, the former effect is shown to be

non-existent, and a finite wall velocity is found in the ground state.
In the limit of an abrupt wall the spin-transfer torque vanishes and it is the force

Fel that will dominate matters. This force must exceed the pinning force (the gradient

of the pinning potential) in order to move the wall and a third expression for the
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critical current density is found – this time for a charge current, rather than a
spin-current: j cr ¼ NV0=
eNe�w, and the average wall velocity after depinning is
obtained as h _XX i ¼ ðD2eNe=�hh�NSÞ�wj. This limit cannot normally be reached as
the wall resistivity is usually very small and the wall is much too wide: generally
related facts. However, this version of the theory only takes into account time-
independent dc currents. At finite frequencies the force term can dominate even in
systems that would show very small wall MR to a dc current, as was demonstrated
experimentally in the resonance studies of Saitoh et al. [465]. The geometrically
constrained walls [298] found in nanocontacts [319] may also experience large forces
as �w may be very high there. This geometry has been discussed by Osipov,
Ponizovskaya and Garcı́a [491], who treated magnetostatic effects, and Waintal
and Parcollet [492], who discussed a nanomagnet coupled to two FM leads through
tunnel contacts, where spin blockade effects may cause very rapid variations in the
torque with voltage bias.

As noted in Tatara and Kohno’s paper [466], the velocities achieved in reality are
often not as high as might be predicted from the models (figure 51). One reason that
they give is that the efficiency of the spin-transfer process can be compromised if the
angular momentum is dissipated as spin-waves (as detected by Tsoi et al. [493] and
Rezende et al. [496] in multilayers), rather than being coherently directed into the
wall motion. Ansermet discussed how this could, nevertheless, assist an applied field
to depin a wall [495].

As noted above, Bazaliy, Jones and Zhang briefly examined the modification of
the spin-wave spectrum by a spin-current in the case of a half-metallic system [478].
This point was followed up in more detail for systems of arbitrary spin polarisation
by Fernández-Rossier et al. [496] and Shibata, Tatara and Kohno [497]. In the first
of these two papers, an additional term in the spin wave spectrum that depends on
spin-current density is found, that takes the form �!ðkÞ / js � k, a so-called
‘‘spin-wave Doppler shift’’. This was derived in several ways from different micro-
scopic models. The textbook derivation of the spin-wave spectrum in a ferromagnet
yields ! / k2 (see e.g. [154]), so that it appears at first as if an arbitrarily small spin-
current can produce negative spin-wave energies and destroy ferromagnetism, some-
thing that would have been easy to establish experimentally by now. In fact, real
spin-wave spectra contain a gap due to anisotropies and dipolar terms, so that the
spin-current must exceed some critical density before the spin-wave instability sets in:
see figure 52. (It is this same gap that is responsible for the experimental observation
of low dimensional magnetism in spite of the predictions of the Mermin-Wagner
theorem [498].) In transition metal systems the gap is primarily due to the spin-orbit
interactions that give rise to anisotropy, and so it is of interest to search for this
effect in systems where this interaction is small, such as permalloy. They go on to
point out that this physics is intimately related to spin-torque at a domain wall:
using the (standard) spin-torque expression of Bazaliy, Jones, and Zhang, and
solving the modified LLG equation that results from it for the case of spin-waves
yields the Doppler shift term just discussed. The same term was derived by Shibata,
Tatara and Kohno [497], who similarly showed that a uniformly magnetised state is
not the ground state under a sufficiently strong spin-current flow. They argue that at
least in the case of a uniaxial anisotropy, the true ground state is one that contains
domain walls, where the spin-wave instability is absent. The walls are moving with
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an average velocity equal to the spin-current drift velocity: this has a Galilean
invariance with a static domain structure in the absence of current. Estimates of
the critical current for domain wall formation were found to be in accord with
experimental results in a point contact geometry [452, 453, 499].

6. Conclusion

To summarise the main points: domain walls have been shown to affect the resistivity
of magnetic materials in a large number of complex ways. There are a variety of
extrinsic mechanisms for this, such as AMR or Lorentz force MR, as well as the
sought-after intrinsic effects related to the domain walls interactions with the spin-
polarised currents that flow in ferromagnets. Theoretical predictions for these offer
the possibility that the effect may be of either sign. Experimental results have been

Figure 52. Current modified spin-wave spectrum. The j¼ 0 has an anisotropy gap of 1meV.
A current density of j ¼ 1:1� 109 A/cm2 is enough to reduce the energy for creation of
a finite-q magnon to zero, leading to a collapse of the ferromagnetic state. After Fernádez-
Rossier et al. [496].

Figure 51. Time-averaged wall velocity h _XXi as a function of spin-current, js, in the weak
pinning case (V0 9K?), where the critical current density is given by the point at which the
spin-transfer torque can no longer be absorbed by the transverse anisotropy K? of the mag-
netic wire. After Tatara and Kohno [466].
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reported in bulk materials, thin films, multilayer heterostructures, and mesoscopic
devices, with the introduction of domain structures reported to either reduce or
enhance the conductivity. In most cases the effects are rather small, and
deconvolving the various extrinsic changes in the resistivity of the samples is not
straightforward. Only in a few cases, where few nm thick walls have been achieved
through the use of high anisotropy materials, are the intrinsic effects large enough
to be easily detected without extensive data manipulation [53, 113, 184, 225, 237,
243, 293]. Without exception these more clear-cut results show that the presence of
a domain wall gives rise to additional scattering leading to a rise in the resistivity as
compared to a single domain state. The models which seem best to describe this are
the spin-mistracking models [182, 183], where the precession of the spin around the
rotating exchange field mixes the spin channels. Various aspects of this model have
been borne out by the experimental results, such as anisotropy with respect to wall
direction, thickness dependence, and it seems as though this provides a proper
description of the resistance of a domain wall, at least in the almost-adiabatic,
diffusive limit.

Very large effects are expected theoretically for much thinner walls, but no
definitive experimental observations have yet been made. The effect of BMR in
a point contact is said to rely the introduction of an Å thick wall into the contact,
which can be shown to be reasonable for fairly probable magnetic conditions [298].
This might then go on to affect the conductance by closing quantum channels that
are open in a uniformly magnetised state. The extreme difficulty of structurally and
magnetically characterising such atomic scale contacts, of keeping them stable for
more than a few minutes or field cycles, and of reproducibly measuring them mean
that there is a great deal of conflicting experimental evidence: some groups are
convinced of the reality of the exceptionally large effects they measure [381, 400],
others are equally convinced that these are artifacts and that properly controlled
experiments have revealed only null results [384–386]. Without a definitive
experiment the debate will continue to generate more heat then light, but such
an experiment seems to require a radically different approach to the problem
than what has gone before. There is a great opportunity here for an inspired
researcher.

Spin-polarised currents have also been shown to be capable of inducing domain
wall motion [425, 442] at high velocity [427], although the exact maximum wall speed
that may be (or has been) achieved is still an open question [439, 440, 466, 479].
Achieving this motion requires very high current densities, close to the point at
which devices will fail due to elecromigration effects. There are now several quite
sophisticated theories of this motion [439, 440, 466, 479] and these suggest possible
mechanisms for a reduction of the critical current required to induce wall motion. The
current may either apply a force to a wall, if it presents a large resistance to the current
so that there is substantial scattering from it, or may apply a torque as spins are
flipped during their passage through the wall. Theory leads experiment in this area at
present, and there are great opportunities for experiments searching for more optimal
materials, examining more complex device geometries, looking at the various high
frequency micromagnetic effects, and exploiting the new dynamic modes of driving
walls that are now available [465]. Such experiments will help further refine the
theories: all of those described here are phenomenological in nature. Attempts at
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materials-specific calculations of the forces and torques involved are only just

beginning [500].
The topics reviewed in this article are still active areas of research, especially

the current-induced domain wall motion effect discussed in the previous section.

Spin-transfer physics appears to be in its heyday, although of course one can never

predict what new discoveries the future will bring. Most of the results reviewed in this

article have been found in conventional metallic magnetic materials, and the new

opportunities afforded by the development of magnetic semiconductor materials

have already revealed huge nanocontact MR [401] and low current density wall

motion [446], albeit at cryogenic temperatures. The field is still a very rich and reward-

ing one for further research, with many questions unanswered and challenges unmet.
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magnetoresistance in 3d ferromagnets. Physica B 294–295 102 (2001).
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[201] V.K. Dugaev, J. Barnaś and J. Berakdar, Electrons in ferromagnets with domain walls.

J. Phys. A 36 9263 (2003).
[202] P. Weinberger, L. Szunyogh, C. Blaas, C. Sommers and P. Entel, Magnetic properties

of bulk NicFe1�c alloys, their free surfaces and related spin-valve systems. Phys. Rev. B
63 094417 (2001).

[203] S. Gallego, P. Weinberger, L. Szunyogh, P.M. Levy and C. Sommers, Ab initio
description of domain walls in permalloy: energy of formation and resistivities.
Phys. Rev. B 68 054406 (2003).

[204] F.S. Bergeret, A.F. Volkov and K.B. Efetov, Resistance of a domain wall in the
quasiclassical approach. Phys. Rev. B 66 184403 (2002).

[205] B.Y. Yavorsky, I. Mertig, A.Y. Perlov, A.N. Yaresko and V.N. Antonov, Giant
magnetoresistance due to a domain wall in Fe: Ab initio study. Phys. Rev. B 66

174422 (2002).
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[285] A.D. Kent, U. Rüdiger, J. Yu, S. Zhang, P.M. Levy, Y. Zhong and S.S.P. Parkin,
Magnetoresistance due to domain walls in micron scale Fe wires with stripe domains.
IEEE Trans. Magn. 34 900 (1998).
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submicron (110) Fe elements. Appl. Phys. Lett. 76 766 (2000).

[292] R.G. Chambers, Proc. Roy. Soc. A 202 378 (1950).
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in magnetic wires. Phys. Rev. Lett. 92 107202 (2004).

[489] S.E. Barnes and S. Maekawa, Current-driven domain wall motion in thin ferromagnetic
wires. cond-mat/0311039, 2003.

[490] S.E. Barnes and S. Maekawa, Current-spin coupling for ferromagnetic domain walls in
fine wires. Phys. Rev. Lett. 95 107204 (2005).

[491] V.V. Osipov, E.V. Ponizovskaya and N. Garcı́a, Displacement of domain walls under
a nanocontact current: mechanism for magnetoresistance asymmetric switching.
Appl. Phys. Lett. 79 2222 (2001).

[492] X. Waintal and O. Parcollet, Current-induced spin torque in a nanomagnet. Phys. Rev.
Lett. 94 247206 (2005).

[493] M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi and P. Wyder, Generation and
detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406
46 (2000).

[494] S.M. Rezende, F.M. de Aguiar, M.A. Lucena and A. Azevedo, Magnon excitation by
spin injection in thin Fe/Cr/Fe films. Phys. Rev. Lett. 84 4212 (2000).

[495] J.-P. Ansermet, Classical description of spin wave excitation by currents in bulk
ferromagnets. IEEE Trans. Magn. 40 358 (2004).

[496] J. Fernández-Rossier, M. Braun, A.S. Núñez and A.H. MacDonald, Influence of
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