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Recent progress in nanotechnology has stimulated interest in
mesoscopic superconductors as components for quantum com-
puting and cryoelectronics. The critical parameters for super-
conductivity (current and ®eld) of a mesoscopic sample are
determined by the pattern of vortices in it, which in turn is
controlled by the symmetry imposed by the shape of the sample
(see ref. 1 and references therein). Hitherto it has been unclear
what happens when the number of vortices is not consistent with
the natural symmetry. Here we show that additional vortex±
antivortex pairs nucleate spontaneously so as to preserve the
symmetry of the sample. For example, in a square with three
vortices, the spontaneously generated pair, along with the original
three vortices, distribute themselves so that the four vortices sit in
the four corners, with the antivortex in the centre. The measured
superconducting phase boundary (of superconducting transition
temperature Tc versus magnetic ®eld strength) is in very good
agreement with the calculations, giving direct experimental evi-
dence for these symmetry-induced vortex±antivortex pairs.
Vortex entry into the sample is also changed: vortices enter a
square in fours, with antivortices generated to preserve the
imposed vorticity. The symmetry-induced nucleation of antivor-
tices is not restricted to superconductors, but should also apply to
symmetrically con®ned super¯uids and Bose±Einstein conden-
sates.

The nucleation of superconductivity is normally analysed in
terms of the linearized Ginzburg±Landau (LGL) equation2
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with H � rotA the applied magnetic ®eld. Equation (1) looks like an
ordinary SchroÈdinger equation for a free particle in an external
magnetic ®eld, where the `wavefunction' w stands for the complex
superconducting order parameter and a � 2 ~2=2m*y2�T�, with
y(T) the temperature-dependent coherence length. The supercon-
ducting boundary condition3 considerably complicates the solution
of equation (1); we used a recently developed analytical gauge
transformation, such that the vector potential A has no component
normal to the sample boundaries of arbitrary regular polygons
(L. F. C. et al., unpublished work). The lowest Landau level of
equation (1) then gives the shift of the superconducting transition
temperature Tc(H).

The solutions of the LGL equation for the square, shown in Fig. 1,
are characterized by irreducible representations (irreps) A, B, E- and
E+, with the characters exp (inp/2), for n � 0; 2; 2 1 or 1 under the
fourfold rotation, respectively4. The ground Landau level shows an
oscillatory cusplike behaviour as a function of ¯ux, corresponding
to a crossover of states belonging to different irreps (Fig. 1a).

Figure 1b shows the comparison of the calculated and the
measured phase boundary (open squares) for the mesoscopic Al
square. The theoretical coloured curve is obtained from Fig. 1a,
where the ground state level is selected for all ¯ux values. The Tc(H)
boundary is measured resistively, using an electronic feedback
circuit. For experimental details, we refer to ref. 5. The agreement

between the calculated lowest Landau level and the measured Tc(©)
is very good. We note that no ®tting parameters were needed to
match the cusp positions.

At the cusp positions on the phase boundary the vorticity L
changes by one, starting from zero (no ¯uxoids) at low magnetic
®elds. In the case of a disk (C`) the vorticity is just the orbital
quantum number, L, de®ning the ¯ux, L©0, carried by the giant
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Figure 1 Calculated and measured superconducting T c 2 H phase boundary for a

square. a, Lower eigenvalues of the LGL equation for the mesoscopic square, as a

function of magnetic ¯ux ©=©0, with superconductor±vacuum boundary conditions. The

different colours correspond to the four irreducible representations (irreps) A (red), B

(green), E+ (dark blue) and E- (dark yellow). Because of the discrete C4 symmetry there is a

`repulsion' of the levels, giving a regular pattern of avoided crossings between levels

belonging to the same irrep. The ¯ux is de®ned as © � Ha2, with a the side length of the

square, and H the applied magnetic ®eld. The superconducting ¯ux quantum

©0 � h=2ec. On the vertical axis, the critical temperature Tc is linearly decreasing with

increasing a2/y2(T ). The coloured squares on the lower lines indicate the values of © for

which vortex patterns are shown in Figs 2±5. The dashed straight line is the upper critical

®eld Hc2 in a bulk type 2 superconductor, and H c3 � 1:69 H c2 (dotted straight line) is the

surface critical ®eld for a semi-in®nite slab bordered by a straight superconductor±

vacuum interface. b, Comparison between the calculated (continuous coloured curve) and

the measured Tc(©) phase boundary (open squares). The experimental data have been

corrected for the presence of the measuring leads. A zero-temperature coherence length

y�0� � y�T �
�����������������
1 2 T =T c

p
� 99 nm was used to obtain the best agreement. The zero-

®eld critical temperature is T c � 1:36 K. The top left inset shows the atomic force

microscope image of the investigated 2 3 2 mm2 square. In the seven insets, the vortex

structure in different regions of the phase diagram is shown schematically with coloured

circles. In the range 5 , ©=©0 , 6:3, an antivortex is formed spontaneously at the

centre of the square, coexisting with four ©0-vortices along the diagonals.
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vortex6. For the square the rotational axis is of ®nite order (C4) and,
therefore, the distribution of vortices in symmetry-consistent
solutions, considered here, is not a priori evident. The seven insets
in Fig. 1b show schematically the distribution of vortices, which are
clearly different from the giant vortex states.

In the case of small L values, vortices can occupy one central and
four diagonal positions. In contrast to the diagonal vortices which
always enclose a single quantum ©0, the central vortex can have
different winding numbers in order to conserve the total vorticity of
a given state. The contribution of the two kinds of vortices (central +
four diagonal) to the total winding number of the states shown in
Fig. 1b is given by

L � n � 4m �2�

where n � 0; 1; 2 or -1 and m � 0 or 1.
First, the nature of the central vortex changes, whenever vorticity

is changed by one. Thus, the central vortex is absent in the ®rst state,
is a ©0-vortex in the second state, is a giant vortex in the third state
and is an antivortex (the winding number is negative) in the fourth
state (see Fig. 1b). Second, the sequence of winding numbers of the
central vortex (-1,0, 1, 2) is periodically repeated when going to the
right of the phase diagram. Because the kinetic energy of a vortex is
proportional to L2, the system prefers to split the giant vortex into a
sum of smaller vortices7 if there are no special symmetry restric-
tions. This explains why only four numbers mentioned above
appear as winding numbers for the central vortex. On the other
hand, the formation of antivortices is dictated completely by the
discrete symmetry. Indeed, in the state with L � 3, one cannot
distribute three ©0-vortices on the square keeping the symmetry.
The dilemma is solved by having four ©0-vortices and adding one
antivortex in the centre. This is also the lowest energy state

(compare with the fourth state in Fig. 1b).
Spontaneous generation of antivortices also controls the ¯ux

penetration into mesoscopic superconductors. Our theoretical
analysis shows that in regular polygons with N edges the ¯ux
enters always by N©0-vortices through the edge centres, because
these are the symmetry points with the lowest values of |w| on the
borders. Increasing the ®eld further, it is energetically favourable for
these vortices to reorient towards the corners of the polygon (Fig.
1b), thus paving the way for the entrance of the next set of N©0-
vortices. However, such a reorientation cannot be performed by a
continuous rotation of the vortex patterns, as that would violate the
imposed symmetry. Therefore, the formation of additional anti-
vortices and vortices turns out to be indispensable.

This is further illustrated for the square. Three states in the
evolution of the vortex patternsÐentrance of vortices (initial), the
transient state (intermediate), and the formation of diagonal
vortices (®nal)±are shown in Figs 2±5 for the four irreps. The
dynamics of this transformation differs dramatically for states of
different symmetry. Thus, in the case of irreps E+ and A four vortices
and four antivortices arise in the intermediate state. For the other
two irreps the intermediate state is associated with the change of the
winding number of the central vortex: the giant 2©0-vortex decays
into a giant antivortex -2©0 and four diagonal ©0-vortices in the
case of irrep B, whereas for the irrep E- the central ©0-antivortex is
transformed into a giant 3©0-vortex by absorbing the four lateral
©0-vortices. For direct visualization of these unusual vortex patterns
(Figs 1±5), local vortex-imaging techniques, such as scanning Hall
probe8,9, scanning tunnelling10,11, magnetic force12, and Lorentz
microscopy13 are very promising.

The appearance of symmetry-induced antivortices remains valid
for all other superconducting polygons (triangle, pentagon, and so
on). Our results might also be applicable to large antidot arrays,
where the spontaneous generation of antivortices could provide
conditions for stronger vortex pinning. The spontaneous generation
of antivortices is clearly a fundamental property of symmetrically
con®ned vortex matter in general. Our ®ndings are applicable not
only to superconductors, but also to super¯uids (4He and 3He) and
Bose±Einstein condensates. Super¯uids rotated in a triangular or
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irrep E+ 

–1 0Φ–2 0Φ +1 0Φ +2 0Φ +3 0Φ

Figure 2 Vortex entry into a square for applied magnetic ®elds generating ®ve ¯ux quanta.

The symmetry of the corresponding states is E+ (blue curves in Fig. 1). The top panels

show the density of the order parameter |w|2 for the initial, intermediate and ®nal stages

corresponding to the © values marked by the squares (from left to right) in Fig. 1a. The

highest density is shown in red. The lowest |w|2 values are coloured yellow, indicating the

positions of vortices and antivortices. The lower three panels show the phase gradient of

the order parameter, corresponding to the above contour plots. The gradient is

represented by arrows with appropriately scaled lengths. The coloured ®lled circles in the

lower three panels relate each vortex to its winding number (see below). Here, in the

middle panels the central region of the square was magni®ed 16 times. Stage one (on the

left) shows the four `lateral' vortices approaching the central vortex from the middles of the

square's sides. At the transition state (in the centre), the central region suddenly changes

into a chequerboard-like pattern of vortices and antivortices. In a subsequent step (not

shown here) the vortices from the four pairs of lateral vortices approach each other and

suddenly `rotate' by 908. As the ¯ux further increases, the antivortices and the `rotated'

©0-vortices move towards the corners and eventually merge to form single diagonal

©0-vortices (on the right).

irrep B

–1 0Φ–2 0Φ +1 0Φ +2 0Φ +3 0Φ

Figure 3 Vortex entry into a square for applied magnetic ®elds generating six ¯ux quanta.

The symmetry of the corresponding states is B (green curves in Fig. 1). The same colour

conventions as in Fig. 2 were used. The middle plots correspond to the central region of

the square magni®ed 5 times. The reorientation mechanism in this case involves the

transformation of the central 2©0 giant vortex (on the left) into a giant antivortex ( 2 2©0-

vortex) and four diagonal ©0-vortices (central panels). Under this transformation the total

vorticity remains invariant: 8 3 ©0 2 1 3 2©0 � 6©0. While the diagonal vortices

move to the corners, the lateral ©0-vortices further approach the centre and are absorbed

by the central antivortex, restoring in this way the initial 2©0 giant vortex, characteristic for

the irrep B.

© 2000 Macmillan Magazines Ltd



square vessel would also generate antivortices in order to comply
with the imposed symmetry. By proper arrangement of the laser
®elds, the vortex patterns in Bose±Einstein condensates con®ned by
triangular or square traps could also reveal symmetry-induced
antivortices.

Our symmetry-conserving results for a triangle form a natural
generalization to superconducting boundary conditions of the
quantum-mechanical problem of a `̀ particle in an equilateral
triangle''14. An intriguing correspondence can be drawn between

the eigenstates in the triangle and families of leptons (electrons or
muons) and quarks. M
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irrep E–

–1 0Φ–2 0Φ +1 0Φ +2 0Φ +3 0Φ

Figure 4 Vortex entry into a square for applied magnetic ®elds generating three ¯ux

quanta. The symmetry of the corresponding states is E - (dark yellow curves in Fig. 1). The

same colour conventions as in Fig. 2 were used. The central region of the square is

magni®ed 64 times, for the middle plots, and 8 times for the plots on the right. In this

mode, the lateral ©0-vortices approach and merge with the central antivortex to form a

giant 3©0-vortex. With increasing ®eld, the 3©0-vortex will split into four diagonal ©0-

vortices and the initial single antivortex (on the right). In order to be able to see the four

separate ©0-vortices, the panels on the right had to be magni®ed. This is owing to the

strong attraction of the ©0-vortices to the central antivortex. For the same reason, the

spacing between the three dark yellow squares in Fig. 1a is large, as compared to the

other irreps.

irrep A

–1 0Φ–2 0Φ +1 0Φ +2 0Φ +3 0Φ

Figure 5 Vortex entry into a square for applied magnetic ®elds generating four ¯ux

quanta. The symmetry of the corresponding states is A (red curves in Fig. 1). The same

colour conventions as in Fig. 2 were used. The middle plots correspond to the central

region of the square magni®ed 16 times. In the initial stage (left), there is no central vortex

in this case. The approach of the lateral ©0-vortices induces the creation of a central

vortex±antivortex pattern (central panels), which is however rotated by 458, as compared

to Fig. 2. At higher ¯ux (on the right), the lateral vortices and antivortices will annihilate,

leaving four diagonal ©0-vortices which move towards the corners.
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The dynamics of swimming ®sh and ¯apping ¯ags involves a
complicated interaction of their deformable shapes with the
surrounding ¯uid ¯ow. Even in the passive case of a ¯ag, the
¯ag exerts forces on the ¯uid through its own inertia and elastic
responses, and is likewise acted on by hydrodynamic pressure and
drag. But such couplings are not well understood. Here we study
these interactions experimentally, using an analogous system of
¯exible ®laments in ¯owing soap ®lms. We ®nd that, for a single
®lament (or `¯ag') held at its upstream end and otherwise
unconstrained, there are two distinct, stable dynamical states.
The ®rst is a stretched-straight state: the ®lament is immobile and
aligned in the ¯ow direction. The existence of this state seems to
refute the common belief that a ¯ag is always unstable and will
¯ap1,2. The second is a ¯apping state: the ®lament executes a
sinuous motion in a manner akin to the ¯apping of a ¯ag in the
wind. We study further the hydrodynamically coupled interaction
between two such ®laments, and demonstrate the existence of
four different dynamical states.
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