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We analyze a superconductor-ferromagnet �S /F� system with a spiral magnetic structure in the ferromagnet
F for a weak and strong exchange field. The long-range triplet component �LRTC� penetrating into the ferro-
magnet over a long distance is calculated for both cases. In the dirty limit �or weak ferromagnetism� we study
the LRTC for conical ferromagnets. Its spatial dependence undergoes a qualitative change as a function of the
cone angle �. At small angles � the LRTC decays in the ferromagnet exponentially in a monotonic way. If the
angle � exceeds a certain value, the exponential decay of the LRTC is accompanied by oscillations with a
period that depends on �. This oscillatory behavior leads to a similar dependence of the Josephson critical
current in SFS junctions on the thickness of the F layer. In the case of a strong ferromagnet the LRTC decays
over the length which is determined by the wave vector of the magnetic spiral and by the exchange field.
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I. INTRODUCTION

It is well known that superconductivity and ferromag-
netism are antagonistic phenomena �see, for example, the
reviews1–3�. Exchange interaction in ferromagnets results in
ordering electron spins in one direction, whereas supercon-
ducting correlations in conventional superconductors lead to
the formation of Cooper pairs with opposite spins of elec-
trons. The antagonistic character of ordering in ferromagnets
�F� and in superconductors �S� is the reason for an essential
difference between the proximity effects in S /N and S /F
structures �here N denotes a normal nonmagnetic metal�. In
S /N structures the condensate penetrates the normal metal N
over a rather long distance which in the dirty limit ��T�1, �
is the elastic scattering time� is equal to

�N = �D/2�T , �1�

where D=�l /3 is the diffusion coefficient and l=�� is the
mean free path. On the other hand, the depth of the conden-
sate penetration into a ferromagnet in S /F system is much
shorter

�F = �D/h �2�

if the exchange energy h is larger than the temperature T
�usually h�T�. The formula �2� is valid for a short mean
free path �h��1�. If the exchange field h is strong enough
�h��1�, the condensate penetrates the ferromagnet over a
distance of the order of l �if �T	1� and oscillates with the
period �v /h.4,5

Note that a short length of the condensate penetration is
related to the fact that Cooper pairs in a conventional super-
conductor are formed by two electrons with opposite spins.
In the case of a homogeneous magnetization the wave func-
tion f�t− t�� of Cooper pairs penetrating into the ferromagnet
consists of two parts

f3�t − t�� � �
↑�t�
↓�t�� − 
↓�t��
↑�t�� , �3�

f0�t − t�� � �
↑�t�
↓�t�� + 
↓�t��
↑�t�� . �4�

The first function describes the singlet component. It dif-
fers from zero both in the whole superconducting region and
in the ferromagnet over the length �F. The second function
f0�t− t�� describes the triplet component with zero projection
of the magnetic moment of a Cooper pair on the z axis �the
magnetization vector M is oriented along the z axis�. It is not
zero only in the vicinity of the S /F interface, over a distance
��S=�D /2�Tc in the superconductor and over the distance
�F in the ferromagnet. This function is an odd function of the
difference �t− t�� and therefore is equal to zero at t= t�. This
means that in the Matsubara representation f0��� is an odd
function of �, whereas the function f3��� is an even function
of �.

All the statements above concern only the case of a ho-
mogeneous magnetization in the F region. The situation
changes qualitatively if the magnetization is not homoge-
neous, for example, if one has a spiral magnetic structure in
the ferromagnet. In this case not only the singlet and triplet
component with zero projection of magnetic moment, but
also a triplet component with a nonzero projection of
magnetic moment arises in the system. This type of the
triplet component means that Cooper pairs appear in the
system that are described by the condensate function
f tr�t− t����
↑�t�
↑�t��� or f tr�t− t����
↓�t�
↓�t���. The trip-
let pairing is well known in superfluid He3 �Refs. 6 and 7� or
in Sr2RuO3

8 and is believed to be realized in compounds
with heavy fermions.9 The condensate function f tr��� in
these materials is an odd function of momentum p and an
even function of the Matsubara frequency �. The order pa-
rameter � is a sum of f tr���over positive and negative � and
corresponds to a triplet pairing. This triplet component is
suppressed by impurity scattering.10

In S /F structures the impurity scattering is rather strong
as ferromagnetic films used in these structures are thin �typi-

cally the thickness of the F films d is about 20–100 Ā� and
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the elastic scattering at least at the F surface is strong. There-
fore the conventional triplet component would be strongly
suppressed. However there is a special type of the triplet
component which can survive a strong impurity scattering.
This triplet component is described by a condensate wave
function f tr��� that is even in momentum p and odd in fre-
quency �. This type of the condensate was suggested by
Berezinskii in 1975 in attempt to describe the pairing mecha-
nism in superfluid He3.11 It turned out however that in reality
the condensate function in He3 is an even function of � and
an odd function of p. Later a possibility to realize the odd �in
frequency� triplet superconductivity in solids was discussed
for various models in Refs. 12–14.

The odd in frequency � and even in momentum p triplet
component in S /F structures differs from that discussed in
the preceding paragraph. It coexists with the singlet compo-
nent and the order parameter � is determined only by the
ordinary �BCS� singlet component fsngl��� even in �. The
triplet component with nonzero projection of the magnetic
moment of Cooper pairs arises as the result of action of a
rotating exchange field on electron spins. This type of the
condensate penetrates the ferromagnet over a long distance
of the order of �N �see Eq. �1�� provided the period of the
magnetization rotation exceeds �N.

A S /F structure with an inhomogeneous magnetization
has been studied for the first time in Ref. 15. The authors
considered a S /F structure with a Bloch-type domain wall at
the S /F interface in the limit of a short mean free path
�h�	1�. In the domain wall of the thickness w the magneti-
zation vector was supposed to have the form M
=M0	0,sin Qx , cos Qx
, where the x axis is normal to the
S /F interface. Outside the domain wall the magnetization
was constant: M =M0	0,sin Qw , cos Qw
. The condensate
function f tr�� ,x���
�t�
�t���� was found from the linear-
ized Usadel equation. It was established that this triplet com-
ponent odd in frequency and even in momentum penetrates
the magnetic domain wall over the length

�Q = �Q2 + 2���/D�−1/2. �5�

It spreads outside the domain wall over distances of the order
�N. At x�w the vector of the magnetization is fixed so that
the first term in Eq. �4� Q2 should be dropped. This triplet
component may be called the long-range triplet component
�LRTC�. The LRTC may cause a significant change in the
conductance of the Andreev interferometer consisting of fer-
romagnetic wires and a superconducting loop. As was shown
in Ref. 15, the conductance variation decreases with increas-
ing temperature in a monotonic way.

Somewhat later the same problem was considered in the
Ref. 16. In that paper, a more complicated situation was dis-
cussed, namely, the case when the width of the domain wall
is short compared to the mean free path. In order to find the
condensate function �quasiclassical Green’s function�
f tr�� ,x� in this case, one needs to solve a more general Eilen-
berger equation taking into account a nonhomogeneous mag-
netization. Unfortunately, the authors of Ref. 16 did not man-
age to solve the Eilenberger equation and therefore restricted
themselves with a rough estimation of the amplitude of

f tr�� ,x�. So, the problem of calculation of the odd triplet
condensate function in the ballistic regime remained un-
solved.

In the present paper we continue studying behavior of the
triplet condensate considering new situations. To be specific,
we study the LRTC in S /F junctions with a spiral magnetic
structure in different limits including the quasi-ballistic one
�i.e., h��1�. This spiral structure may be both an intrinsic
property of a ferromagnet �for example, a helicoidal struc-
ture; see Ref. 17� or may just serve as a rough model for
magnetic domains.

We consider a system with a conical ferromagnet, that is,
we assume that the magnetization in F rotates in 	y ,z
 plane
and has a constant component along the x axis. This type of
spin structures is realized, for instance, in Ho �Ref. 18� and
what we discuss now is a generalization of the problem con-
sidered in Ref. 15, where the x component of the magnetiza-
tion in F was assumed to be zero. Our study of the proximity
effect in such a S /F system with a spiral magnetic structure
is motivated also by the recent experiment performed on a
Al/Ho structure.19

First, solving the Usadel equation, we find the condensate
function in the dirty limit. It turns out that the spatial varia-
tion of the LRTC has a nontrivial dependence on the cone
angle � �see Fig. 1�. If � is small, the LRTC decays with x
exponentially over a distance of the order of �Q, but at angles
�� sin−1�1/3��19�, the LRTC decays in a nonmonotonic
way. It oscillates with a period depending on �. These oscil-
lations lead to oscillations of the critical Josephson current in
SFS junction as a function of the thickness of the F film 2L
if the thickness 2L is essentially greater than �F. In this case
the Josephson coupling is only due to the LRTC.

We continue the investigation studying in the third section
the LRTC in a S /F structure with a spiral structure in the
limit when the condition h��1 is valid and the Eilenberger
equation must be solved. We analyze peculiarities of the
LRTC in this case. Surprisingly, this case has not been inves-
tigated previously, although it may correspond to a real situ-
ation. In many ferromagnets the exchange energy h is very
large so that the product h� can be arbitrary. In both sections
we make an assumption that the proximity effect is weak,
i.e., the amplitude of the condensate function in the ferro-
magnet f is small. This assumption is presumably valid in
most cases because there is a strong reflection of electrons at
the S /F interface due to a considerable mismatch in
electronic parameters between the ferromagnet and

FIG. 1. Schematic view of the system under consideration. �a�
S /F structure with a conical ferromagnet. Magnetization in the fer-
romagnet F rotates in the 	y ,z
 plane and has a constant projection
on the x axis. �b� Josephson junction with a conical ferromagnet.
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superconductor.20 In conclusion we summarize the obtained
results and discuss a possibility of experimental observations
of the predicted behavior of the LRTC.

Note that in Refs. 15 and 16 and in the present paper a
Bloch-type spiral structure is analyzed. The rotation axis was
assumed to be perpendicular to the S /F interface so that the
condensate decays in the ferromagnet in the direction paral-
lel to this axis �see Fig. 1�. In this case the LRTC arises in the
system.

At the same time, one can imagine another, Neel-like type
of a spiral structure with the magnetization vector M that
rotates in the plane of the ferromagnetic film and does not
vary in the perpendicular direction. A solution for this type of
the spiral structure has been found in Ref. 21. The authors
considered the case of a thin F film and did not study the
decay length in the direction normal to the film.

The same problem for a thick �infinite� ferromagnetic film
was analyzed by Champel and Eschrig in a recent paper.22

These authors assumed that the magnetization vector M lies
in the plane of the ferromagnetic film and rotates in this
plane being constant in the perpendicular direction. Surpris-
ingly, they found that there was no LRTC in this case.

As was shown later,23 the absence of LRTC is specific for
this homogeneous spiral magnetic structure. In contrast, the
long-range triplet component arises if the Neel-type spiral
structure is nonhomogeneous; for example, if the F film con-
sists of magnetic domains separated by the Neel walls. In
this case the LRTC appears in domain walls and decays in
domains over a long length of the order �N. Another case
where the LRTC arises is a spin-active S /F interface. Such a
type of interface leads to mixing singlet and triplet compo-
nents and the triplet component may penetrate even into a
half-metal ferromagnet when the conduction band consists of
electrons with only one direction of spins.24

II. S /F STRUCTURE WITH A ROTATING
MAGNETIZATION. DIRTY LIMIT

We consider a system shown schematically in Fig. 1. A
ferromagnetic film F is attached to a superconductor S. The
magnetization M in the ferromagnet is assumed to rotate in
space and the vector M has the form

M = M0	sin �,cos � sin Qx,cos � cos Qx
 . �6�

This form of the magnetization vector implies that the pro-
jection of the M vector onto the x axis M0sin � is constant
and the projection onto the 	y ,z
 plane M0cos � rotates in
space with the wave vector Q. We also assume that the con-
dition

h� � 1 �7�

is fulfilled, that is, either the exchange energy h is not large
or the collision frequency �−1 is high enough. In addition, we
assume that the proximity effect is weak, i.e., the condensate
function f is small. The smallness of the f function means the
presence of a barrier at the S /F interface or a big mismatch
in electronic parameters of the superconductor and ferromag-
net �the Fermi momenta in F and S differ greatly�. In this
case one can linearize the Usadel equation and represent it in
the form4,25

�2 f̌/x2 − 2k�
2 f̌ + ikh

2sgn �ˆcos �	��̂3, f̌�+cos �x�

+ �̂3��̂2, f̌�+sin �x�
 + sin ��̂3��̂1, f̌�‰ = 0, �8�

where �=�T�2n+1�, k�
2 = �� � /D, kh

2=h /D, the brackets

��̂3 , f̌�+ and ��̂3 , f̌� denote anticommutator and commutator.

The quasiclassical condensate Green’s function f̌ is a 4�4
matrix in the particle-hole and spin space. The Pauli matrices
�̂i and �̂i operate in the particle-hole and spin space, respec-
tively.

The Green’s function in the bulk of the superconductor is

f̌ S = �̂2�̂3fS, �9�

with fS=� /��2+�2. This function describes an ordinary sin-
glet condensate in conventional superconductors. Assuming
this solution to be valid up to the interface, we use the
“rigid” boundary condition at the SF interface �x=0�26,27

� f̌/�x = − f̌ S/�B, �10�

where �B=RB�, � is the conductivity of the ferromagnet, and
RB is the interface resistance per unit area. This boundary
condition is valid provided the ratio �h /�B=��h /RB is large,
that is, the interface resistance should be larger than the re-
sistance of the F wire of length �h.

What we have to do is solve Eq. �8� in the ferromagnetic
region �x�0� with the boundary conditions �10� at x=0.
Equation �8� is a linear differential equation with coefficients
depending on the coordinate x. This dependence can be ex-
cluded if we make an unitary transformation determined by a

matrix Ǔ and introduce a new matrix f̌ n

f̌ = Ǔ f̌nǓ+, �11�

where the matrix Ǔ=exp�i�̂3�̂1Qx /2� describes a rotation in
the spin and particle-hole space. Substituting the expression

�11� into Eq. �8�, we get the equation for the new matrix f̌ n

− �2 f̌/�x2 + �Q2/2 + 2k�
2 � f̌ + �Q2/2���̂1 f̌�̂1� − iQ�̂3��̂1,� f̌/�x�+

− ikh
2sgn �	cos ���̂3, f̌�+ + sin ��̂3��̂1, f̌�
 = 0. �12�

For brevity we dropped the subindex n. The boundary con-
dition �10� acquires the form

� f̌/�x + i�Q/2��̂3��̂1, f̌�+ = − f̌ S/�B. �13�

As concerns the matrix f̌ S, it does not change �it is invariant
with respect to the transformation �11��. In order to solve Eq.
�12� with the boundary condition �13�, we represent the ma-

trix f̌�x� as an expansion in Pauli matrices

f̌�x� = 
i

�̂iFi
ˆ �x� , �14�

where i=0,1 ,2 ,3 and �̂0 is the unit matrix. The functions

Fi
ˆ �x� are matrices in the particle-hole space. The spatial de-

pendence of the functions Fi
ˆ �x� is determined by the expo-

nential functions Fi
ˆ �x��Aiexp�−�x�, where the eigenvalues

� are determined from the determinant of Eq. �12�. Putting
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the determinant to zero, we obtain the equation for eigenval-
ues � �see Appendix A�

��2 − Q2 − 2��
2 �2���2 − 2��

2 �2 + 4�h
4sin2 �� + 4�Q��2

����2 − 2��
2 �2 + 4�h

4sin2 �� + 4�h
4cos2 ���2 − Q2 − 2��

2 �

���2 − 2��
2 � = 0. �15�

This equation has four pairs of roots. However, four of
them correspond to solutions growing in the ferromagnet. As
we are interested only in decaying solutions �Re ��0�, we
keep four proper roots.

In order to simplify the calculations, we consider a limit-
ing case of a large exchange field assuming that

�h
2 � 	Q2,��

2 
 . �16�

In this limit two eigenvalues of the wave vectors � are large
and equal to

�± = �1 ± i sgn ���h. �17�

These roots describe a rapid decay of the condensate in the
ferromagnet over an “exchange length” �h

−1 of the order �F
�see Eq. �2��. Only these eigenvalues appear in the case of a
homogeneous magnetization. These large eigenvalues have
both real and imaginary parts and they are equal to each
other. This means that corresponding eigenfunctions decay
and oscillate in space on the same scale. The oscillations of
the function F3 �singlet component� lead to oscillations of
the critical temperature Tc and Josephson current Ic in SFS
structures with varying the F film thickness d.2,3,25

In addition to these large values �±, there are two other
solutions �a,b that describe a long-range penetration of the
triplet component. The singlet component also contains a
part decaying slowly but, as we will see, its amplitude is
small in comparison with the amplitude of the triplet com-
ponent. These eigenvalues are small: �a,b

2 �max	Q2 ,��
2 
.

One can find exact expressions for �a,b, but in order to make
results more transparent, we represent solutions in the limit

Q2 � ��
2 . �18�

In this case Eq. �15� is reduced to the following quadratic
equation for the eigenvalues �a,b��a,b

2 /Q2:

�2 − ��1 − 3 sin2 �� + sin2 � = 0 �19�

with the roots

�a,b = 3/2�1/3 − sin2 � ± cos ��1/9 − sin2 �� . �20�

Now, let us consider these eigenvalues as a function of the
angle �. If the magnetization in the ferromagnet lies in 	y ,z

plane �i.e., �=0�, we obtain only one root: �a=1 �the other
root should be dropped as it corresponds to a solution with
the zero amplitude�. This means that the triplet component
penetrates the ferromagnet over the long-range �LR� distance
�LR�Q−1. If the value of Q2 is comparable with or less than
��

2 , then the characteristic penetration length of the triplet
component is �LR=1/�Q2+��

2 �compare with Ref. 15�. As
follows from Eq. �20�, at small � the first eigenvalue equals
�a�1−4 sin2 ��1−4�2, whereas the second root is small
and equal to �b�sin2 ���2.Therefore in this case the
exponential decay of the triplet component is slow:
f tr�exp�−Qx �� � �.

Both the eigenfunctions decay exponentially in a mono-
tonic way over a length much longer than �F. The situation
changes if sin � exceeds the value 1/3 ���sin−1�1/3��. In
this case the LRTC oscillates and decays in a nonmonotonic
way. The period of the oscillations �1/Q is much longer
than �F. If the magnetization vector is oriented almost along
the x axis �sin �→1,cos �→0�, the period of oscillations
�Q−1 is much shorter than the decay length of the LRTC
which is equal to �2/ �Q cos ���1/Q �see Fig. 2�.

The amplitudes of the components F̂�x�i are found from
the boundary conditions �13�. One can show that the matri-

ces F̂�x�i can be represented in the form �see Appendix A�

F̂�x�0,3 = �̂2
k

A0,3kexp�− �kx� , �21�

�̂3F̂�x�1,2 = �̂2
k

A1,2kexp�− �kx� , �22�

where the summation is carried out over all eigenvalues: k
= ± ;a ,b. In the approximation Eq. �16� the amplitudes are

�A0±/cos � = ± iA2±/sin � = A3± = �fS/2�B�±� , �23�

− i tan �A2a,b = A0a,b = ��a,b − 1�/�2i��a,b�A1a,b. �24�

The amplitude of the long-range triplet component is equal
to

FIG. 2. Spatial dependence of the real part of
the triplet �a� and singlet �b� component for dif-
ferent angles; S=sin �. The singlet component al-
most does not depend on �. Both component are
normalized to the quantity �fS /��h�. The param-
eter �h /Q is choosen equal to 5.
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A1a = sgn �
fS

�B�h

�acos �

��a + 1����a − ��b�
. �25�

The expression for A1b is obtained from Eq. �25� by permu-
tation a�b. These formulas are valid if both sin � and cos �
are not too small: 	cos � , sin �
�Q /�h.

As we mentioned, the amplitude A3 corresponds to the
singlet component and the amplitude A0 describes the triplet
component with zero projection of the magnetic moment on
the z axis. In a homogeneous case �M is constant in the
ferromagnet� this component penetrates the ferromagnet over
a short length of the order �F. In the case of rotating magne-
tization it penetrates the ferromagnetic region over a long
distance of the order of min	1/Q ,1 /��
. The amplitude A2

arises only in the case of a tilted magnetization ���0�. One
can see from Eqs. �23�–�25� that in the considered limits the
amplitudes A3± ,A0± ,A2± ,A0a,b ,A2a,b, and A1a,b are compa-
rable with each other �other amplitudes are small�. Therefore
the LRTC with nonzero projection on the z axis is compa-
rable with the magnitude of the singlet component at the S /F
interface �A3++A3−�� fS /��h. The spatial dependence of the
LRTC amplitude is given by the expression

fLR�x� =
fSsgn �

�B�h
� �a

�a + 1
exp�− Qx��a� −

�b

�b + 1

�exp�− Qx��b�� cos �

��a − ��b

, �26�

where fLR�x� is defined in this way: F̂1�x�= i�̂1fLR�x�, x��F.
As it should be, this function is an odd function of �. In

Fig. 2 we plot the spatial dependence of Re�fLR�x�� for some
values of sin � and compare it with the spatial variation of
the singlet component.

f3�x� =
fS

2�B
� 1

�+
exp�− �+x� +

1

�−
exp�− �−x�� �27�

It is seen that the LRTC decays over distances longer than
the singlet component. At small sin � the LRTC decays mo-
notonously, but with increasing �, oscillations of the LRTC
arise. The characteristic scale of the LRTC decay in the con-
sidered case �the condition �18� is fulfilled� is Q−1. In the
opposite limit of a spiral with a small Q �Q���� the roots
�a,b changes: �a,b��2���1± iQsin � /�2���. This means
that the LRTC decreases exponentially in the ferromagnet on
the length of the order �N and oscillates with the period
�Q sin ��−1. In this case the decay length is shorter than the
oscillation period and therefore there should be no oscilla-
tions in observable quantities. In a general case the charac-
teristic length ltr of the LRTC decay is ltr�min	1/Q ,�N
.

In the next section we discuss a possibility to observe the
unusual behavior of the LRTC and demonstrate that such an
observation is realistic.

III. JOSEPHSON EFFECT IN SFS JUNCTION

In this section we consider a Josephson SFS junction with
the same spiral magnetic structure as in the preceding sec-

tion. This junction is shown schematically in Fig. 1�b�: A
ferromagnetic layer with the spiral structure connects two
superconductors where the phases of the order parameter are
equal to ±� /2. We assume again a weak proximity effect and
consider an important case where the Josephson coupling
between the superconductors is due the LRTC only. This
means that the condition

�hL � 1 �28�

should be fulfilled. In this case the singlet component decays
fast near the S /F interfaces and the Josephson coupling is
provided by an overlap of the LRTC.

In order to find the Josephson current IJ, we need to solve
Eq. �12� with boundary conditions at x= ±L. The boundary
conditions coincide with Eq. �13�, where in this case the

matrix f̌ S at x= ±L is replaced by

f̌ S = fS��̂2cos��/2� ± �̂1sin��/2���̂3. �29�

The matrix f̌�x� is again represented in the form of an expan-
sion in the Pauli matrices �see Eq. �14��, but the “coeffi-

cients” F̂�x�i in this expansion acquire a somewhat more
complicated form. These matrices �in the particle-hole space�
have the structure �see Appendix B�

F̂�x�0,3 = �̂2
k

A0,3kcosh��kx� + �̂1
k

A0,3ksinh��kx� .

�30�

The matrix �̂3F̂�x�2 has the same structure. As concerns the

matrix �̂3F̂�x�1, it has a similar structure but with another
spatial dependence

�̂3F̂�x�1 = �̂2
k

A1ksinh��kx� + �̂1
k

A1kcosh��kx� . �31�

The coefficients A1k ,A1k can be found from a solution for
Eq. �12� in a way similar to that in the preceding section.

The Josephson current �per unit square� is calculated us-
ing a general formula for the condensate current in the dirty
case �see, for example, Refs. 25 and 28�

IJ = i��T/4��
�

Tr	�̂3 · �̂0 f̌ � f̌/x
 , �32�

where � is the resistivity of the F metal. Making the trans-
formation �11�, one can rewrite this formula in terms of the

new function f̌ n

IJ = �i�T/4��
�

Tr	��̂3 · �̂0� f̌„� f̌/x + i�̂3�Q/2�� f̌ ,�̂1�+…
 .

�33�

We dropped again the index ”n.” After simple but somewhat
cumbersome calculations we obtain for IJ

ODD TRIPLET SUPERCONDUCTIVITY IN A¼ PHYSICAL REVIEW B 73, 104412 �2006�

104412-5



IJ = Icsin �,Ic

= �T��/2��Q�
�,
�A1A1�1 −

�� − 1�2

4 sin2 �
����� ,

�34�

where the summation over  means that =a and =b.
The amplitudes A1a ,A1a can be found as before. We find

�see Appendix B�

A1a =
2�a

��a + 1�sinh �a

i�A3− − A3+�cos �

M
, �35�

A1a =
2�a

��a + 1�cosh �a

i�A3− − A3+�cos �

M
, �36�

where M =��a / tanh �a−��b / tanh �b, M=��atanh �a

−��btanh �b ,�a,b=�a,bL. The coefficients A1b ,A1b are given
by the same formula with replacement a→b. Under the con-
dition �28� the coefficients for the singlet component A3± are
described by formulas similar to Eq. �23�

A3± =
fS

2�B�±
cos��/2�; A3± =

fS

2�B�±
sin��/2� . �37�

Equations �34�–�37� determine the Josephson critical for
the SFS junction under consideration. In the approximation
�18� we can perform the summation over � and obtain for
the critical current

Ic =
2��Q�

���B�h�2� tanh� �

2T
�Jc. �38�

Here the coefficient �B�h is assumed to be large. Only in this
case the Usadel equation may be linearized. However the
obtained results are valid qualitatively in the case when this
factor is of the order 1. The quantity Jc depends only on the
angle � and the product QL. It is equal to

Jc =
cos2 �

MM 

�� �

� + 1
�2�1 −

�� − 1�2

4sin2 �
� 1
��sinh 2�

� .

�39�

Here the roots �a,b are given by Eq. �20�. Since at some
angles the roots �,b have an imaginary part, one can expect
that the normalized critical current changes its dependence
on L with varying angle �. First we demonstrate this analyti-
cally considering a limiting case. We assume that the overlap
of the condensate induced by each superconductor is weak.
This means that �� � �1 and therefore sinh 2�,b
��1/2�exp�2�,b�, tanh ��1. If in addition the angle � is
close to � /2, i.e., cos ��1. In this limit we obtain

Jc � �2 cos � exp�− �2QL cos ��sin�2QL� . �40�

Therefore the normalized critical current Jc�L� as a function
of L undergoes many oscillations with the period �� /Q� on
the long decay length ��2Q cos ��−1. It turns to zero at
cos �→0, but the decay length becomes infinite. We remind
that there is a lower limit on cos �. It was assumed that

cos � is larger than the small ratio Q /�h. The maximum of Jc
is achieved at cos ��1/�2QL if QL�1.

In Fig. 3 we plot the dependence of the critical current Ic
on the length L for different projection of the magnetization
on the x axis. In accordance with the analysis above, it is
seen that at the angle determined by sin �=1/3 the decay of
Ic with increasing L is accompanied by oscillations. The pe-
riod of these oscillations is of the order Q−1 and depends on
the angle �. These oscillations are caused by oscillations of
the LRTC.

IV. STRONG FERROMAGNET (QUASIBALLISTIC CASE)

In this section we consider the opposite limit, i.e., the
condition

h� � 1, �41�

is assumed to be fulfilled. This case may be realized either in
a weak ferromagnet with a large mean free path or in a
strong ferromagnet with a large exchange energy h. For ex-
ample, this condition is fulfilled for h�1 eV if the mean free

path is longer than �50 Ā �we take the Fermi velocity v
=vF↑�vF↓�108 cm/s�. For simplicity we assume that the
M vector lies in the 	y ,z
 plane �that is, �=0�. In order to
find the condensate function in the ferromagnet, we have to
use the more general Eilenberger equation. We assume again
that the proximity effect is weak. The linearized Eilenberger

equation for the condensate matrix function f̌ reads29 �see
Appendix A�

�l	�̂3 � f̌/�x + i�Q/2���̂1, f̌�+
 + 2���� f̌ − ih� sgn ���̂3, f̌�+

= � f̌� − f̌ , �42�

where �= px / p, px is the projection of the momentum vector
p on the x axis, l=�v is the mean free path, the angle brack-
ets means the angle averaging. The boundary condition is26

�sgn ���̂3ǎ = �sgn ��t� f̌ Sx=0, �43�

where ǎ���= � f̌���− f̌�−��� /2 is the antisymmetric part of
the condensate function and t�=T��� /4, T��� is the trans-
mission coefficient of the S /F interface. In order to find the

solutions of Eq. �42�, we represent the matrix f̌ as a sum of
antisymmetric and symmetric functions

FIG. 3. Dependence of the normalized critical Josephson current
Jc on QL for various S=sin �.
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f̌��� = ǎ��� + š��� , �44�

where š���= � f̌���+ f̌�−��� /2. The matrices ǎ��� and š���
are represented again as a series in the spin matrices �̂i

ǎ = 
i

âi�̂i, š = 
i

ŝi�̂i, �45�

where i=0,1 ,3. The coefficients âi , ŝi are, as before, matri-
ces in the particle-hole space. We substitute these expansions
into Eq. �42� and single out the symmetric and antisymmetric
parts. After some algebra we obtain for the diagonal matrix
elements in the spin space �š�11�22�= ŝ0± ŝ3� ŝ± �see Appen-
dix C�

ŝ±�x� = ± �̂2t�fSexp�− K±x/l�� , �46�

where K±=�� ih, �=1+2 �� �� ,h=2h� sgn �. The sin-
glet �ŝ3� component and the triplet �ŝ0� component with zero
projection of the magnetic moment of Cooper pairs are re-
lated to ŝ±�x� : ŝ3,0�x�= �š11�x�� š22�x�� /2. As is seen from Eq.
�46�, these components oscillate in space with a short period
of the order of � /h and decay over the mean free path l �if
�T�1�. When deriving the expression for ŝ3,0�x�, we as-
sumedthat the condition

Ql/�h� = Q�/h � 1 �47�

is satisfied, but the relation between the period Q−1 of the
spiral and the mean free path may be arbitrary.

Let us turn to the more interesting LRTC ŝ1. An equation
that describes the LRTC differs considerably from the one
for the matrices ŝ±�x�. Characteristic wave vectors are much
smaller in this case. For the Fourier transform ŝ1�k�
=�dxŝ1�x�exp�ikx� this equation has the form

��
2 + �Q2��/h�2 + k2���l�2�ŝ1�k� + �l��2�Qk�

��̂3�ŝ0 + i��/h�ŝ3� = ��ŝ1� . �48�

The matrices ŝ0,3�x� are given in the first approximation
by Eq. �46�. Equation �48� can be solved in a general case,
but we are interested in the behavior of the LRTC at dis-
tances much longer than the mean free path l. This means
that one has to find the matrix ŝ1�k� for small k: k� l. We find
�see Appendix C�.

ŝ1�k� = − �i�̂1�
6Q

k2 + KQ
2

�
2

h
��2t��fS, �49�

where ��2t��=�0
1d��2t� and KQ

2 =2 �� � /D+ �Q /h�2. Per-
forming the inverse Fourier transformation, we find the spa-
tial dependence of the LRTC

ŝ1�x� = − �i�̂1�3
Q

hKQ
��2t��fSexp�− xKQ� . �50�

We took into account that �=1. This is the main result of
this section. The spatial dependence of the singlet component
ŝ3�x�= �s+−s−� /2 is given by Eq. �46�.

Comparing Eqs. �50� and �46�, we see that the amplitude
of the LRTC is comparable with the amplitude of the singlet
component at the S /F interface. Indeed, if �2�T /D�Q /h,
then KQ�Q /h and the coefficient �Q /hKQ� in Eq. �50� is
of the order of 1.

In Fig. 4 we plot the spatial dependence of the LRTC and
the singlet component. One can see that the singlet compo-
nent oscillates fast with the period of the order � /h= l /h� �we
take the magnitude of h� equal to 5� and decays over the
mean free path l. The LRTC decays smoothly over a length
��Q /h��−1 �we assumed that �Q /h��2�2�T /D�.

V. CONCLUSIONS

We considered the odd triplet component of the supercon-
ducting condensate in S /F systems with a spiral magnetic
structure. The axis of the spiral is assumed to be perpendicu-
lar to the S /F interface �the Bloch-like spiral structure�. We
analyzed both dirty �h�	1� and clean �h��1� limits. These
limits correspond in practice to the cases of weak and strong
ferromagnets.

In the diffusive limit we studied the case of a conical
ferromagnet when the magnetization vector M has the con-
stant projection M sin � on the x axis and rotates around this
axis. The condensate amplitude in the ferromagnet was as-
sumed to be small compared to its amplitude in the super-
conductor �a weak proximity effect�. In addition, we as-
sumed that the exchange energy h was larger than such
energy scales as T ,DQ2 �dirty limit�, Q� �clean limit�. In this
case the penetration length of the singlet component is much
less than that of the LRTC. The singlet component penetrates
the ferromagnet F over a distance of the order �D /h in the
dirty limit and over the mean free path l in the nearly clean
limit �if �T�1�. In the ballistic case ��T�1� the singlet
component decays over distance of order v /T. In the nearly
clean or ballistic case the singlet component oscillates fast

FIG. 4. Spatial dependence of the real part of
the LRTC �a� and singlet �b� component in qua-
siballistic case. The singlet component shown for
�=1 does not depend on Q. Both component are
normalized to the quantity ��3t��fS and �t�fS�,
respectively. The parameter hv /Q is choosen
equal to 5.
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with the period v /Q. The LRTC decays over a length of the
order min	Q−1 ,�N
.

In conical ferromagnets the LRTC has an interesting non-
trivial dependence on the cone angle �. At small � the LRTC
decays exponentially in a monotonic way over the length
1/Q �if Q��N

−1�, but at ��sin−1�1/3��19° the exponential
decay of the LRTC is accompanied by oscillations. The pe-
riod of these oscillations depends on � so that at �→� /2
the period of oscillations is much smaller than the decay
length. The amplitude of the LRTC is comparable with the
amplitude of the singlet component at the S /F interface. The
latter amplitude is determined by the S /F interface transmit-
tance and decreases with increasing h.

In the dirty limit we calculated also the critical Josephson
current Ic for a S /F /S junction with a conical ferromagnet F.
It was assumed that the thickness of the F layer 2L is much
larger than �F. Therefore the Josephson coupling is only due
to an overlap of the LRTCs whereas the overlap of the sin-
glet components induced by superconductors is negligible.
The dependence of Ic on the angle � is determined by the
LRTC: At small � the critical current Ic decreases with L
monotonously, but with increasing � the decay of the func-
tion Ic�L� is accompanied by oscillations. Therefore measure-
ments of the Josephson critical current in SFS junctions with
a conical ferromagnet may provide useful information about
the LRTC. Note that the triplet component may also exist in
magnetic superconductors with a spiral magnetic structure
�see Ref. 1 and references therein�. However, in magnetic
superconductors the triplet component coexists with the sin-
glet one and, contrary to our case, cannot be separated from
the singlet superconductivity.

We also studied the LRTC in the limit h��1 for �=0. In
this case the singlet component decays over a length of the
order of the mean free path l �if �T�1�. Its amplitude at the
S /F interface is determined by the S /F interface transmit-
tance and does not depend on h. The LRTC penetrates
the ferromagnet over a length of the order of �Q /h��−1 �if
Q� �h�� /�N�. The decay length of the LRTC is longer than
the decay length of the singlet component l provided the
condition h�Qv is valid.

Note that we neglected the spin-orbit interaction. The lat-
ter restricts the penetration length of the LRTC by the value
of the order of D /8�so where �so is the spin-orbit relaxation
time.25
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APPENDIX A: BASIC EQUATIONS; DIRTY CASE

The Eilenberger equation in a stationary case for the sys-
tem under consideration has the form

�v
� ǧ

�x
− i���̂3�̂0, ǧ� − ��̂�̂3, ǧ� − ih	cos ����̂3�̂3, ǧ�cos �x�

+ ��̂2, ǧ�sin �x�� + sin ���̂1, ǧ�� +
1

2�
��ǧ�, ǧ� = 0,

�A1�

where �= px / p, � is the Fermi velocity, ǧ is a 4�4 matrix of
the retarded �advanced� Green’s functions. The order param-

eter �̂ is not zero only in the superconductor and the ex-
change field h differs from zero only in the ferromagnet. If
the phase in the superconductor is chosen to be zero, then

�̂= i�̂2�. The angle brackets mean the angle averaging. In the
Matsubara representation the energy � is replaced by �: �
→ i�. If the condition h��1 is fulfilled, the antisymmetric in
momentum p part of ǧ�p� is small and can be expressed
through the symmetric part of ǧ. For the symmetric part ǧ
one can obtain the Usadel equation �see, for example, Ref.
25� that in the Matsubara representation reads

D � �ǧ � ǧ�/�x2 + ���̂3�̂0, ǧ� − ��̂�̂3, ǧ�

+ ih	cos �„��̂3�̂3, ǧ�cos �x� + ��̂2, ǧ�sin �x�…

+ sin ���̂1, ǧ�� = 0, �A2�

where D=vl /3 is the diffusion constant.
In the case of a weak proximity effect one can linearize

Eqs. �A1� and �A2�. For example, in order to obtain the
linearized Usadel equation for a small condensate function

f̌�x� in the ferromagnet, we represent ǧ�x� in the form

ǧ�x� = sgn ��̂3�̂0 + f̌�x� , �A3�

where the first term is the matrix quasiclassical Green’s func-
tion of a normal metal. Linearizing Eq. �A1� with respect to

f̌�x�, we come to Eq. �8�.
In order to find solutions for the matrix f̌�x�, we substitute

the representation of this matrix f̌�x� in the form of Eq. �14�
and Eqs. �21� and �22� into Eq. �12�. As a result we obtain on
the left-hand side of this equation a sum of four terms pro-
portional to the matrices �̂i. Coefficients at each matrix �̂i
are matrices in the particle-hole space. The sum of these four
terms equals zero. Therefore we obtain four equations for
these coefficients at �̂i, where i=0,1 ,2 ,3

�− �2 + Q2 + 2��
2 �F̂0��� + 2iQ���̂3F̂1����

− 2i cos ��h
2F̂3��� = 0, �A4�

2iQ�F̂0��� + �− �2 + Q2 + 2��
2 ���̂3F̂1���� = 0, �A5�

�− �2 + 2��
2 ���̂3F̂2���� − 2 sin ��h

2F̂3��� = 0, �A6�

− 2i cos ��h
2F̂0��� + 2 sin ��h

2��̂3F̂2����

+ �− �2 + 2��
2 �F̂3��� = 0. �A7�

This system of equations has a nonzero solution if the
determinant of the system is zero. Thus we come to Eq. �15�
for four eigenvalues �k. In order to determine the matrices

F̂i, we have to use the boundary conditions �13�. Since the

matrix f̌ S in the particle-hole space contains only the matrix

�̂2, the matrices F̂0,3��� and �̂3F̂1,2��� also are proportional to
the matrix �̂2. Therefore one can write the expansion �21�
and �22�. The amplitude of each mode are Ai,k, where the first
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index i is related to the spin space and the second k mean the
eigenvalues of the wave vectors �k�k= ± ,a ,b�. From Eqs.
�A4�–�A7� one can determine relations between amplitudes
Ai,k��k� for each mode. As follows from Eqs. �A4�–�A7�, the
coefficients Ai��k� are connected with each other via Eqs.
�23�, �24�, and �24� provided the conditions �16� and �18� are

fulfilled. The matrices ��̂3F̂1��±����2iQ /�±�F̂0��±� and

F̂3��a,b��−�Q /�h�2�za,b / sin ��2F̂0��±� are small compared
to other matrices. Using these relations and substituting the
representation �14� into the boundary condition �13�, we ob-
tain four equations for the amplitudes Ai,k��k� �i=0,1 ,2 ,3�


n,

	�nA0n + �A0 − iQA1
 = 0, �A8�


n,

	�nA1n + �A1 − iQ�A0n + A0�
 = 0, �A9�


n,

	�nA2n + �A2
 = 0, �A10�


n,

	�nA3n + �A3
 = �fS/�b� , �A11�

where the summation is performed over the eigenvalues n
= ± ,=a ,b; that is, the indices n and  correspond to the
short- and long-range eigenfunctions, respectively. Solutions
for these equations yield Eqs. �23�–�25�.

APPENDIX B: JOSEPHSON EFFECT

We consider the limit �hL�1 when one can neglect the
overlap of the short-range eigenfunctions corresponding to

the eigenvalues �±. In this case solutions for F̂0,1�x� may be
represented in the form

F̂0�x� = 
n,

�A0n�̂2 ± A0n�̂1�exp�− �n�L � x��

+ A0�̂2cosh��x� + A0�̂1sinh��x� , �B1�

where n ,, as before, are equal to ± and a ,b. The matrix

F̂2�x� has a similar form. The amplitude of the long-range

component of F̂3�x� is small. This can be seen from Eq. �A4�.
The matrix F̂1�x� has a different spatial dependence

F̂1�x� = �̂3
n,

�A1n�̂2 ± A1n�̂1�exp�− �n�L � x��

+ A1�̂2cosh��x� + A1�̂1sinh��x� . �B2�

The first term in Eqs. �B1� and �B2� describes the modes
fast decaying from the S /F interfaces at x= ±L and the sec-
ond term corresponds to the LRTC. The coefficients A1n ,A1

and A0n ,A0 are connected with each other by Eqs.
�A4�–�A7� �see Eqs. �23� and �24��. The additional terms

A0,1n,�̂1 appear because the matrix f̌ S has changed �see Eq.
�29��. In order to find these amplitudes, one has to substitute
the expressions Eqs. �B1� and �B2� into the boundary condi-
tions

� f̌/�x + i�Q/2��̂3��̂1, f̌�+x=±L = �fS/�b���̂2cos��/2�

± �̂1sin��/2�� · �̂3. �B3�

Performing the calculations in this way, we arrive at four

equations for the matrices F̂i�L� �compare with Eqs.
�A8�–�A11��


n,

	�nA0n + �A0sinh � + iQA1sinh �
 = 0, �B4�


n,

	��nA1n + �A1cosh �� + iQ�A0n + A0cosh ��
 = 0,

�B5�


n,

	− i tan ��̂3�nA0n + i cot ��A0sinh �
 = 0, �B6�


n,

	�nA3n + �A3cosh �
 = �fS/�b�cos��/2� . �B7�

We expressed F̂2n, in terms of F̂0n, making use Eqs. �23�
and �24�. The corresponding equations for the coefficients
Ai,n, may be obtained in a similar way. These equations
coincide with Eqs. �B4�–�B7� if one makes the replacement
sinh ��cosh � and cos�� /2�→sin�� /2�. In the main ap-
proximation in the parameter Q /�h solutions for these equa-
tions are given by Eqs. �35�–�37�.

APPENDIX C: QUASIBALLISTIC CASE

In this section we represent formulas for the condensate

function f̌�x� in the case of a strong ferromagnet or a large
mean free path l when the condition �41� is fulfilled. Substi-
tuting Eq. �A3� into Eq. �A1� and performing the transforma-
tion �11�, we obtain the linearized Eilenberger equation for

the new function f̌ n�x� in the ferromagnet �for brevity we
drop the subindex n�

��̂3l � f̌/�x + i�Q/2��l��̂1, f̌�+ + � f̌ − i�h/2���̂3, f̌�+ = � f̌� ,

�C1�

where �=1+2 �� �� ,h=2h� sgn �. In order to solve this

equation, we represent the matrix f̌�x� as a sum of matrices
symmetric š�x� and antisymmetric ǎ�x� in the momentum
space

f̌�x� = š�x� + ǎ�x� . �C2�

Equations for these matrices can be obtained if we substi-
tute Eq. �C2� into Eq. �C1� and split it into the symmetric
and antisymmetric in � parts. We write down, for example,
equations for the diagonal elements of matrices š�x� and ǎ�x�
in the spin space: š�x�11�22�= ŝ±, ǎ�x�11�22�= â±. These equation
have the form

�K±
2 − �2l2�2/�x2�ŝ± + �Ql��2�K±/��ŝ0

= i��l�2Q�1 + K±/���̂3 � ŝ1/�x + K±�ŝ±� , �C3�
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K±â± = − ��l���̂3�xŝ± + iQŝ1� . �C4�

The coefficients K± are defined in Eq. �46�. We solve
equations for ŝ± assuming that the coefficients K± are large,
that is, h is large. In addition, we assumed that the ratio
Ql /h=Qv /h is small. In this case the second term on the
left-hand side and all terms on the right-hand side of Eq.
�C3� can be neglected. Solving this equation with the bound-
ary conditions �43�, in the main approximation we obtain the
expression �46�. One can easily check that the term �ŝ±� is
much smaller than K±ŝ± provided the quantity h is large.
The equation for the matrix ŝ1 can be readily obtained in a
similar way. We get

��
2 + ��l�2Q2��

h
�2

− �2l2�2/�x2���̂3ŝ1� − �l��2iQ�x

��ŝ0 + i
�

h
ŝ3� = ���̂3ŝ1� . �C5�

The boundary condition for �̂3ŝ1�x� at x=0 requires that
â1=0 at x=0. The expression for the antisymmetric matrix â1
has the form

�â1 = − �l������̂3ŝ1�/�x + iQŝ0� . �C6�

As follows from Eq. �46�, at the S /F interface in the main
approximation ŝ0�0�=0. Therefore the boundary condition
for the matrix �̂3ŝ1�x� may be written as

�xŝ1 = 0. �C7�

Equation �C5� can be solved in the following way. In the
main approximation the coordinate dependence of the matri-
ces ŝ0,3�x� is given by Eq. �46� �ŝ0,3= �ŝ+± ŝ−� /2� and these
functions vary over distances �l /K± � �v /h that are much
shorter than a characteristic scale for the LRTC variation.
Therefore approximately we can represent a solution for Eq.
�C5� in the form

�xŝ1�x� = − �̂3iQ�ŝ0�x� + i��/h�ŝ3�x�� + �x�ŝ1�x� .

�C8�

In particular the matrix �ŝ1�x� contains the LRTC. As fol-
lows from Eqs. �C6� and �C7�, the boundary condition for
the function �ŝ1�x� is

�x�ŝ1�x� = − Q���/h�ŝ3�x��x=0, �C9�

where ŝ3�0�= �̂2t�fS. The equation for �ŝ1�k� in the Fourier
representation ��ŝ1�k�=�dx�ŝ1�x�exp�ikx�� can be easily ob-
tained from Eqs. �C5�, �C8�, and �C9�. It has the form

��
2 + Q2��

h
�2

+ �k�l�2��ŝ1�k�

= ���ŝ1�k�� + 2�l��2Q
�

h
�̂3ŝ3�0� . �C10�

From this equation one can easily find �ŝ1�k�

�ŝ1�k� = �̂3
2Ql2

N�k,��
�

h
� �

NLR�k�� �2

N�k,��
ŝ3�0�� + �2ŝ3�0�� ,

�C11�

where N�k ,��=�
2 +Q2�� /h�2+ �k�l�2 and NLR�k�

=1−��1/N�k ,���. The behavior of the LRTC ŝ1�x� is de-
termined by poles of the functions N�k ,�� and NLR�k�. The
first function has poles at k� l−1. These poles determine a
variation of the matrix ŝ1�x� over distances of the order of the
mean free path from the S/F interface. The function NLR�k�
has poles at much smaller wave vectors k which determine a
long-range penetration of the triplet component. Indeed for
k� l−1 we have: NLR�k�= �l2 /3��k2+KQ

2 � with KQ
2 =2 �� �� /D

+ �Q /h�2. Therefore at these wave vectors k the expression
for �ŝ1�k� is reduced to Eq. �48�.
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