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The rich dynamics of flow between two weakly coupled
macroscopic quantum reservoirs has led to a range of
important technologies. Practical development has so far

been limited to superconducting systems, for which the basic
building block is the so-called superconducting Josephson
weak link1. With the observation of quantum oscillations2 in
superfluid 4He near 2 K, we can now envision analogous practical
superfluid helium devices. The characteristic function that
determines the dynamics of such systems is the current–phase
relation I s(ϕ), which gives the relationship between the superfluid
current I s flowing through a weak link and the quantum phase
difference ϕ across it. Here we report the measurement of the
current–phase relation of a superfluid 4He weak link formed
by an array of nano-apertures separating two reservoirs of
superfluid 4He. As we vary the coupling strength between the
two reservoirs, we observe a transition from a strongly coupled
regime in which I s(ϕ) is linear and flow is limited by 2π
phase slips, to a weak-coupling regime where I s(ϕ) becomes the
sinusoidal signature of a Josephson weak link.

The dynamics of flow between two weakly coupled macroscopic
quantum reservoirs can be highly counterintuitive. In both
superconductors and superfluids, currents will oscillate through
a constriction (weak link) between two reservoirs in response
to a static driving force, which, in a classical system, would
simply yield flow in one direction. In superconductors, such
junctions have given rise to a range of technologies. Although
promising analogous devices3–5 based on weak links have been
demonstrated in superfluid 3He, practical development will be
hampered by the difficulty of working at the very low temperatures
(T < 10−3 K) required. Quantum oscillations were observed
in superfluid 4He at a temperature 2,000 times higher. To
understand the fundamental nature of these oscillations, and to
make progress towards device development, it is necessary to
know the relationship between current and phase difference across
the junction, Is(ϕ). The measurement of Is(ϕ) reported here
reveals a transition between two distinct quantum regimes and
opens the door to the development of superfluid 4He interference
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Figure 1 Schematic of flow through an aperture and corresponding velocity
evolution. a, Superfluid with velocity v accelerates in response to a driving force up
to a critical velocity vc at which a singly quantized vortex is nucleated, crosses the
flow path and causes a drop in v. b, Repeated vortex nucleation events give rise to a
sawtooth waveform. The critical velocity vc drops as T→ Tl. At some T (lower
curve in b) the superfluid flow will actually reverse direction.

devices analogous to the d.c.-SQUID, which will be highly sensitive
to rotation.

When superfluid 4He, well below its transition temperature
Tl = 2.17 K, is forced through a constriction, it will accelerate
until it reaches a critical velocity, vc, at which a quantized vortex
is nucleated. This is shown schematically in Fig. 1. The vortex
moves across the path of the fluid, decreasing the quantum phase
difference between the reservoirs by 2π and decreasing the fluid
velocity6 by a quantized amount 1vs. This phase-slip process
repeats, such that the flow through the constriction follows a
sawtooth waveform. The critical velocity decreases towards zero
as T is increased towards Tl, but 1vs is mostly independent of
T . When vc < 1vs, the flow actually reverses direction whenever
a phase slip occurs. If this situation were to continue as T → Tl
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Figure 2 Schematic of the experimental cell and two typical flow transients.
a, Schematic. b,c, Diaphragm position x ( t ) as a function of time within two flow
transients. These plots each show both lower amplitude Josephson frequency
oscillations, for which 〈1µ〉 > 0, and larger amplitude Helmholtz oscillations, for
which 〈1µ〉 = 0. In b, Tl − T= 7.4 mK, ξ4/d= 0.4 and Is (ϕ ) is mostly linear.
The Josephson frequency oscillations occur by the phase-slip mechanism here: the
superfluid velocity, proportional to dx/dt, follows a sawtooth waveform. In c,
Tl − T= 0.8 mK, ξ4/d= 1.8 and Is (ϕ ) is mostly sinusoidal. Near t= 0.6 s where
the Josephson frequency oscillations decay into Helmholtz oscillations,
ϕ approaches a local maximum of just less than π. The current I∝ dx/dt slows
here, reflecting the sinusoidal nature of Is (ϕ ).

and vc drops below 1vs/2, on phase slipping the flow would
end up with a velocity greater than vc in the opposite direction.
This could not be an energy conserving process. At about the
same temperature that this would occur, the healing length of
the superfluid, ξ4 = 0.34(1− T/Tl)

−0.67 nm, becomes comparable
to the diameter of the constriction, d. Superfluidity is then
suppressed in the confined geometry of the constriction, which
now acts as a barrier between the two reservoirs of superfluid,
analogous to a Dayem bridge in superconductors7. In this limit,
where the wavefunctions on either side of the barrier partially
overlap, the dynamics of flow through the aperture are expected
to be described by the Josephson effect equations, which predict
sinusoidal, rather than sawtooth, oscillations. Flow features of a
hydrodynamic resonator were found to be consistent with such
sinusoidal behaviour8. The system can be brought from one limit
to the other by varying the strength of the coupling through the
aperture. This coupling strength depends on the ratio ξ4/d and we
control ξ4 by varying T .

A schematic of our experimental cell, described in more detail
elsewhere9, is shown in Fig. 2a. A cylindrical inner reservoir of
diameter 8 mm and height 0.6 mm is bounded on the top by an
8-µm-thick flexible Kapton diaphragm on which a 400-nm-thick
layer of superconducting lead has been evaporated. An array of
4,225 apertures spaced on a 3 µm square lattice in a 50-nm-thick
silicon nitride membrane is mounted in a rigid aluminium
plate forming the walls and bottom of the inner reservoir. Flow
measurements both above and below Tl indicate that the apertures
are d = 38±9 nm in diameter. Pressures can be induced across the
array by application of an electrostatic force between the diaphragm
and a nearby electrode, thereby pulling up on the diaphragm.
Above the electrode is a superconducting coil (not shown) in which
a persistent electrical current flows, producing a magnetic field
that is modified by the superconducting plane of the diaphragm.
Motion of the diaphragm, indicating fluid flow through the array,
induces changes in the persistent current flowing in the coil,
which are detected with a SQUID. The output of the SQUID is
proportional to the displacement of the diaphragm x(t). We can
resolve a displacement of 2×10−15 m in 1 s.

The inner reservoir sits in a sealed can filled at room
temperature with 4He through a capillary, which, to decouple
the can and inner reservoir from environmental fluctuations, is
then blocked close to the can with a cryogenic valve. The can is
immersed in a pumped bath of liquid helium that is temperature
stabilized to within ±50 nK using a distributed resistive heater and
high-resolution thermometer10 in a feedback loop.

Superfluid 4He with superfluid density ρs is described by a
macroscopic quantum wavefunction ψ =

√
ρseiφ. In unrestricted

space, the flow velocity is proportional to the gradient of the
phase: vs = (h̄/m4)∇φ. Here h̄ is Plank’s constant h divided
by 2π and m4 is the 4He atomic mass. The superfluid current
Is through our array is a function of the phase difference 1φ
between the two reservoirs. In general this phase difference
evolves according to the Josephson–Anderson phase-evolution
equation, d1φ/dt = −1µ/h̄, where 1µ = m4(1P/ρ− s1T)
is the chemical potential difference across the array. Here ρ is
the fluid total mass density, s is the entropy per unit mass,
and 1P and 1T are the pressure and temperature differences
across the array. If Is(1φ) is 2π periodic, a constant 1µ gives
rise to oscillations at the Josephson frequency, fJ = 1µ/h. This
can occur in either the strong-coupling phase-slip regime or the
weak-coupling Josephson regime. Our goals here are to determine
the detailed time evolution of these oscillations and the underlying
current–phase relation Is(1φ) as we change the coupling strength
by varying the temperature. Hereafter we use ϕ to denote 1φ.

Figure 2b and c shows sections of two flow transients excited
by a step in the pressure 1P across the array. The curves
show the displacement x(t) of the diaphragm as fluid is driven
though the apertures under the influence of a time-dependent
chemical potential gradient. The slope of these curves, dx/dt , is
proportional to the total mass current through the aperture array,
I(t) = ρAdx/dt , where A is the diaphragm area. For both flow
transients, the pressure step is such that a conventional fluid would
be driven in the positive direction (positive slope). In Fig. 2b,
where Tl − T = 7.4 mK, ξ4/d = 0.4 and the coupling is relatively
strong. The regularly spaced slope discontinuities in the first half of
the plot are the signatures of phase slips that occur whenever the
continuously accelerating flow reaches a maximum current Ic. By
contrast in Fig. 2c, where Tl − T = 0.8 mK, ξ4/d = 1.8 and the
system is in the Josephson weak-link regime. The sharp phase-slip
discontinuities have been smoothed out into sinusoidal Josephson
oscillations. The 1µ induced by the initial pressure step relaxes
to equilibrium throughout each transient. When 1µ reaches zero,
the Josephson frequency oscillations cease and lower-frequency
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Figure 3 Evolution of Is(ϕ) with temperature near Tl. Each curve has been
normalized by its maximum value Ic and shifted vertically. The corresponding Tl − T
is indicated in millikelvin to the right of each curve.

resonant ‘Helmholtz’ or ‘pendulum-mode’ oscillations begin, with
current amplitude less than Ic. These are the larger displacement
oscillations in the second halves of Fig. 2b and c.

The method we used to determine Is(ϕ) is conceptually similar
to that used in ref. 11 for 3He. The superfluid current as a
function of time Is(t) is determined from transient data such as
that shown in Fig. 2, with a small correction owing to a small
normal flow component In(t). The phase difference across the
aperture array is determined by integrating the phase-evolution
equation: ϕ(t) = ϕ(0)− h̄−1

∫ t

0
1µ(τ)dτ, where the phase offset is

determined by the fact that ϕ= 0 when Is = 0. Elimination between
Is(t) and ϕ(t) of the common variable of time then yields the
current–phase relation Is(ϕ).

Integration of the phase-evolution equation requires knowledge
of both 1P(t) and 1T(t). 1P(t) is directly determined by the
diaphragm displacement: 1P = kx/A, where k is a measured
spring constant. An absolute calibration of 1P is provided by the
Josephson frequency relation for 1T = 0: 1P = ρhfJ/m4 (with k
and A this, in turn, provides the calibration for x). A temperature
difference 1T(t) is created whenever superfluid flows into or out
of the inner cell (the thermo-mechanical effect) and is calculated
using the measured current and a simple heat-flow equation9.

The current–phase functions for several temperatures are
shown in Fig. 3. A smooth transformation occurs from the
low-temperature strong-coupling regime where Is(ϕ) is linear
with limiting values, into the weak-coupling regime, within a few
millikelvin of Tl, where Is(ϕ) morphs into a sine function. For
Tl − T > 5 mK, Is(ϕ) is mostly linear and the system is in the
phase-slip regime. Under the influence of a constant 1µ, ϕ will
increase linearly until it reaches a critical value ϕc (the maximum
value of ϕ for each plot) then slip back discontinuously by 2π.

Is drops from Is(ϕc) to Is(ϕc − 2π). Because ϕc is less than 2π
at these temperatures, ϕ and Is reverse direction when a phase
slip occurs. As the temperature is increased, going from top to
bottom in Fig. 3, ϕc decreases. Around the temperature at which ϕc

reaches π, Is(ϕ) morphs into a sinusoid, which is the signature of
an ideal Josephson weak link. Each of the curves in Fig. 3 is obtained
by averaging the Is(ϕ) data from between 5 and 70 transients such
as those in Fig. 2.

An intriguing question that remains is why, in the temperature
regimes investigated here, the array seems to act like a single
aperture or a single weak link. The amplitude of the oscillations in
the phase-slip regime, but close to the transition to weak-coupling
behaviour, indicates that all of the apertures are acting together2.
One simple argument for phase coherence across the array
is that phase gradients parallel to the wall containing the
apertures correspond to lateral currents, which are not energetically
favourable. It has been suggested that whereas thermal fluctuations
can be strong in a single aperture, they may be suppressed in an
array12. It is not at all clear in the strong-coupling limit how the
apertures interact and give rise to the synchronous generation of
phase slips. We are working on extending these measurements to
lower temperatures, and there is preliminary evidence that the array
becomes less synchronous as T drops.

We find that the measured Is(ϕ) is well described by an
empirical model consisting of a purely linear kinetic inductance
in series with an ideal (purely sinusoidal) weak link. For the latter,
Is(θ1) = Ic sin(θ1). For the linear inductance, Is(θ2) = h̄θ2/m4L`.
Here θ1 is the phase across the ideal weak link, θ2 is the phase
across the linear inductance L` and ϕ = θ1 + θ2. The model can
be characterized in terms of Ic and the ratio of two inductances,
α = L`/LJ. Here LJ is the kinetic inductance of the ideal weak
link evaluated at θ1 = 0, LJ = (h̄/m4)(dIs/dθ1)

−1
θ1=0 = h̄/m4Ic.

The overall current–phase relation can be written parametrically:
Is = Ic sin(θ1), ϕ = θ1 + α sin(θ1). An analogous model has been
applied to superconducting Josephson junctions13. It has been
found to be inapplicable to 3He weak links14. The model parameters
can be determined from the measured Is(ϕ) in a very simple
way: Ic is the maximum of Is(ϕ), which occurs at ϕ = ϕm,
and α = ϕm − (π/2) is the deviation of the peak position from
π/2. In the limit α→ 0, the linear inductance is negligible and
Is(ϕ) = Ic sin(ϕ). In the limit α� 1, Is(ϕ) is linear except near ϕm.
For α≥ 1, there exists a critical phase ϕc at which dIs/dϕ= −∞.
The model is multiple valued in this case, and a phase slip occurs
when the system falls off the cliff at ϕc onto an adjacent branch
of Is(ϕ). When α� 1, ϕc

∼= ϕm and the size of the phase slip is
1Is =2πIc/α. The transition between the discontinuous phase-slip
regime and the continuous weak-coupling regime occurs when
α= 1, ϕm = (π/2)+1, ϕc =π and 1Is = 0.

The measured parameters Ic and α (independent of any model)
are plotted versus temperature in Fig. 4a and b. The model
prediction for Is(ϕ), using only the measured Ic and α values, is
plotted in Fig. 4c for four different temperatures, along with the
actual measured Is(ϕ). The agreement is striking, and shows that,
within the temperature range we have investigated, the entire Is(ϕ)
can be accurately reproduced by this model at a given temperature
from the measured Ic and α alone. Although the model is empirical,
it lends insight into how the evolution of Is(ϕ) can be viewed as the
transition from a multiple-valued hysteretic function to one that is
single valued.

The experiment described here reveals the evolution of
the function Is(ϕ) characterizing the union of two superfluid
4He reservoirs. This evolution shows a transition between
two important and distinct quantum phenomena: phase slips,
associated with the generation of singly quantized vortices, and
the Josephson effect, associated with the weak coupling of two
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Figure 4 Evolution of superfluid 4He weak-link parameters with temperature and an empirical model that can generate Is(ϕ) from these parameters. a, Measured
maximum current. b, Measured deviation of Is (ϕ ) peak position from π/2. The insets show an expanded view of the data within 4 mK of Tl. c, Normalized Is (ϕ ), measured
(solid points) and generated using the model (dotted lines).

quantum systems through a potential barrier. We find that a simple
two-parameter model accurately describes the entire temperature
regime under study. The sin(ϕ) behaviour revealed at the higher
temperatures will lead to the development of a superfluid 4He
interferometer, an analogue of the superconducting d.c.-SQUID.
Such a device, operating near 2 K, a regime accessible by mechanical
cryo-coolers, will lead to practical devices useful in inertial
navigation, geodesy and basic physics.
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